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Unified Metric Learning for Personalized Fashion Recommendations
with Fast User Adaptation
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Abstract— Personlized fashion recommendation aims to model
outfit composition quality and recommend compatible item
combinations for users. However, existing studies often address
outfit-level and item-level recommendations as separate problems,
resulting in fragmented formulations. In this work, we revisit
these problems from a unified mathematical perspective and
extend fashion recommendation into a coherent family of compo-
sition tasks. These tasks, including outfit recommendation, outfit
completion, outlier item detection, and new user profiling, are
formulated within a common probabilistic framework that differs
only in search constraints or conditioning. Based on this unified
view, we propose a metric learning framework that embeds items,
outfits, and users into a shared space where outfit compatibility
is modeled as the probability of co-occurrence under composition
utility. The learned embeddings provide consistent evaluation
across tasks, enable personalized recommendation, and support
fast user adaptation through plug-and-play user parameters
without fine-tuning. Extensive experiments demonstrate that our
approach achieves state-of-the-art performance across multiple
composition tasks and establishes a unified foundation for gen-
eralizable and adaptive fashion recommendation.

Index Terms—Fashion composition, item recommendation,
outlier detection, representation learning, metric learning

I. INTRODUCTION

NDERSTANDING the relationships between fashion

items within an outfit is a fundamental challenge in fash-
ion recommendation [1]-[5]. Recent advancements have pri-
marily focused on developing models that effectively capture
compatibility among fashion items [6]-[10], especially in the
outfit-composition domain [11]. Unlike complementary item
recommendation [12]-[14], the relationships within an outfit
involve more complex, high-order and implicit dependen-
cies [15]. Various approaches have been proposed to capture
such multiway relationships. For instance, FPITF [1] factor-
ized the compatibility as pairwise interactions between fashion
items and users, Bi-LSTM [2] treated the entire outfit as a
whole sequence, while NGNN [16] additionally constructed
a fashion graph. These approaches aim to better capture the
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(c) Outlier item detection

Fig. 1. Examples of fashion outfit composition tasks. (a) Outfit recommen-
dation. The outfits in orange boxes are positive outfits and those in blue
boxes are negative outfits. (b) Outfit completion. The outfit in the blue box
is incomplete. The item in the orange box matches the incomplete outfit best
among a set of candidate items. (c) Outlier item detection. The outlier items
are indicated in red boxes.

underlying dependence and interaction among multiple fashion
items, which is the crucial for outfit recommendation.

The outfit composition problem [11] involves developing
a utility function that measures the compatibility of fashion
items, guiding the selection of the most compatible outfits
for users, as illustrated in Fig. 1 (a). The recommendation
occasionally transitions from the entire outfit collection to a
restricted subset, where each pair of outfits differs by just
one item. For instance, as shown in Fig. 1 (b) and (c), two
tasks emerge: the outfit completion task [2] recommends the
best item to complete an outfit, and the outlier detection
task [17] identifies the item disrupting the outfit’s harmony
most. These tasks aimed at outfit refinement are subtly distinct
from general outfit recommendation tasks. When combined,
they can assist users in refining their outfits piece by piece.
For internal relationships, outfit recommendation prioritizes
the overall pattern of an outfit, including style and occasion,
while outfit refinement emphasizes the impact of individual
items in outfits. Therefore, applying uniform item relationships
across all tasks could be sub-optimal.

However, the item relationships are usually learned for outfit
recommendation, with the completion task being treated as a
means of model evaluation or a training strategy [2]. As a
result, the difference between current outfit recommendation
approaches largely lies in their way of modeling outfits and
approaching the objective function. For example, decompos-
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ing the multi-way relationship into pairwise interactions is
a factorization way to formulate the compatibility [8], [9]
that usually produce compact item representations for outfit
completion task, but may overlook high-order relationships be-
tween items. Conversely, outfit-level strategies [2], [18], [19],
[19], especially the graph-based approaches, view the outfit as
an integrated entity to uncover high-order item interrelations.
However, these approaches do not yield compact represen-
tations of outfits or items, rendering them less adaptable to
outfit completion tasks. Therefore, recent research [18], [20]
has tackled the outfit completion task by either constructing an
additional network on top of the outfit recommendation model
or through fine-tuning for better performance.

Additionally, performance can vary depending on the ap-
proach to optimize the compatibility. Learning the model with
an outfit ranking approach can produce more discriminating
results for outfit recommendation because it takes into account
the distribution of all negative outfits. In contrast, emphasizing
compatibility differences at the item level can lead to more
discriminating results for outfit completion task, but may
result in sub-optimal performance for outfit recommendation
tasks. Although recent methods have significantly improved
in measuring compatibility between fashion items, they often
overlook the subtle differences among these tasks. The outlier
item detection task, which hasn’t been well studied, follows a
similar trend of oversight.

Furthermore, in personalized cases [1], [9], [21]-[23], it
is important to capture both the general preferences that
reflect overall trends and patterns in the data, as well as the
unique preferences of individual users that deviate from the
general trends. With contemporary models growing rapidly
in size [24], the ability to quickly adapt and accommodate
new users with limited feedback [22], [25] becomes crucial,
especially when user privacy is paramount and fine-tuning a
large deep model is infeasible on user devices.

Hence, developing a unified learning framework capable
of integrating different compatibility measures for outfits,
embracing a broad spectrum of user preferences, while also
being able to swiftly adjust to a new user with limited data
becomes even challenging and also important for modern
recommendation system.

To address these limitations and craft a model that can
swiftly adaptable to new users, we propose a unified frame-
work for learning compact outfit embeddings within the same
metric space of items and users. The metric space is learned
to maximize the probability of compatible outfits, with items
being embedded to facilitate the outfit refinement and user
profiles optimized for personalized recommendation and rapid
adaptation. We treat outfits as set modeling problems [26]-
[28] and use attention mechanisms [29] to capture high-order
relations among the items. The learned outfit embeddings are
permutation invariant to item orders and can be shared across
different tasks. We summary our contribution as follows:

(1) We emphasize that the tasks of completing outfits and
detecting outliers are different from outfit recommendation, a
distinction that previous studies often overlook. We provide
detailed definitions for each task and present them from a
unified probabilistic viewpoint.

(2) We introduce a novel approach that learns a compact
embedding for outfits in the same space as items and users.
This method allows us to address each task within the unified
framework and enables improved performance.

(3) Leveraging our unified framework, we address fast new
user profiling by predicting plug-and-play user preferences
with limited data, bypassing fine-tuning with a closed-form
solution that exceeds the performance of conventional fine-
tuning approaches.

While certain aspects of our study have been discussed
in [17], [22], we thoroughly augment these works, i.e. ex-
tending them into a general framework for different outfit
composition tasks, incorporating category information during
representation learning, conducting more extensive experi-
ments on multiple tasks and datasets.

II. RELATED WORKS

Fashion outfit recommendation [4], [24], [30], [31] has
gained significant attention, focusing on uncovering complex
item relationships. While deep learning is commonly used for
feature extraction, existing methods fall into three categories
based on interaction modeling: factorization-based, neural
network-based, and graph-based approaches.

A. Factorization-based approaches

The factorization-based approaches [8], [9], [21], [32]
mainly decomposes the multi-way compatibility into explicit
interactions, such as pairwise similarities between items. These
methods follow the conventional approach in recommendation
to impose an explicit structure prior [33]. For example, Hu
et al. [1] utilized tensor factorization [34] to model the
interactions between users and fashion items. In [12], [13], a
single latent space was used for measuring the compatibility.
However, the relationships between a pair of items in different
aspects (e.g. color, pattern, category) can be quite different or
even contradictory.

To address the limitation, Veit et al. [14] proposed the
conditional similarity networks (CSN) that compared different
items in different conditions to improve the performance. Tan
et al. [7] improved the CSN method by learning multiple
conditional embeddings and using an attention mechanism
to discover the relative importance of different conditions.
Vasileva et al. [6] further enhance the CSN method by treating
each category pair as a condition. To extend the fashion
recommendation system with side information, Yang et al. [35]
also proposed a translation-based network that learned the
compatibility with the category-specific relations.

More recent approaches [36], [37] leverage attention mecha-
nisms to dynamically weight feature interactions, enabling the
model to learn more fine-grained and representative attentive
features for users and items, thereby improving preference pre-
diction. In general, fashion recommendation systems continue
to build upon matrix factorization and collaborative filtering
as foundational techniques, while incorporating deep learning
methods to capture more complex patterns in fashion data.

Despite these advances, existing factorization-based models
primarily decompose compatibility into explicit interactions,
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and often treat items, users, and outfits separately. A unified
factorized framework that jointly models these entities remains
an open challenge for achieving more holistic and context-
aware fashion recommendations.

B. Neural network-based approaches

The neural network-based approaches [38]-[42] not only
employ deep learning to learn advanced feature representa-
tions, but also predict compatibility through implicit neural ar-
chitectures. Unlike traditional factorization-based models that
rely on explicit interaction modeling, these methods capture
the complex and nonlinear relationships among items and
users in a more flexible manner. Consequently, they have
become central to personalized fashion outfit recommenda-
tion, leveraging sophisticated network structures to model
the nuanced interplay between compatibility and individual
preferences.

These approaches typically extracted visual or textual fea-
tures and then predicted compatibility scores directly [40],
[43]. For example, Polania et al. [44] used fully connected lay-
ers for compatibility computation, while Tangseng et al. [45]
concatenated all item features and applied a binary classifier.
Han et al. [2] represented an outfit as a sequence and employed
a bidirectional LSTM to learn compatibility, though such
sequential modeling is order-sensitive and not permutation-
invariant. Li et al. [46] addressed this limitation via an instance
pooling mechanism using RNNs to aggregate item features.
Transformer-based architectures were later introduced. For
instance, the Personalized Outfit Generation (POG) model [47]
used a Transformer [29] to decode users’ click histories into
outfits, treating outfit completion as a generation task [48].
Other methods employed Vision Transformer (ViT)-based
embeddings [20].

More recent systems further leverage large multimodal mod-
els (LMMs) to jointly encode visual and textual modalities,
thereby enhancing the robustness of compatibility predic-
tion [49], [50]. In addition, diffusion-based generative frame-
works [51], [52] have been employed to jointly generate
multiple fashion items [53], enabling the synthesis of visu-
ally compatible and personalized outfits and extending outfit
recommendation into the generative paradigm.

While neural network—based methods have brought mean-
ingful progress in feature representation, implicit interaction
modeling, and user adaptation, building a unified and efficient
framework [54] that jointly models items, users, and outfits
remains an ongoing area of research.

C. Graph-based approaches

Graph-based approaches have recently gained significant
attention by modeling fashion items, users, and their rela-
tionships as nodes and edges within a graph structure, allow-
ing for the powerful application of Graph Neural Networks
(GNNs) [41], [55]-[61]. These methods are adept at capturing
complex, non-Euclidean relationships that are often missed by
pairwise or sequence-based models.

Early studies constructed item—item or outfit graphs, where
items were represented as nodes and co-occurrence relations

as edges, reformulating outfit compatibility prediction as a
link prediction task [16], [62]. Later extensions incorporated
user—outfit interactions for personalized recommendation [19],
[63]. Recent research emphasizes richer and more adaptive
graph structures [64]-[67]. For instance, outfit-level graphs
connect all items within an outfit and apply dot-attention
or multi-head attention to encode fine-grained visual and
semantic relations, aligning outfit and user embeddings for
personalized matching [59], [61]. Hierarchical designs such
as FGAT [60] organize users, outfits, and items into multi-tier
graphs, jointly modeling compatibility and preference through
attention-based propagation.

To enhance semantic richness and mitigate sparsity, knowl-
edge graphs integrate attribute, brand, and category relations
into GNN pipelines for high-order reasoning and attribute-
aware matching. Advanced variants like FCSA-GNN [41]
capture both low- and high-order connectivity. Transformer-
based and federated GNNs further improve global relation
modeling and privacy-preserving scalability [55], [66].

Graph-based models also support dynamic user preference
modeling by combining long-term and short-term graphs [65]
and aligning multi-intent representations for sequential fashion
recommendation [64]. Despite substantial progress, challenges
remain in graph construction quality, scalability, and over-
smoothing, motivating research toward unified and efficient
graph frameworks capable of fast user adaptation.

III. PERSOANLIZED OUTFIT COMPOSITION TASKS

Let an outfit be represented as a finite set of fashion items
o = {x;}_,, where z; denotes the i-th item in the outfit, and
let 1o denote a user representation. We consider the following
personalized outfit composition tasks [11].

Outfit recommendation. Evaluate how well an outfit o is
composed for a given user p. This is a well-studied problem
that, unlike traditional personalized recommendation, requires
modeling the compatibility among items within the outfit while
accounting for user-specific preferences.

Outfit refinement. Perform item-level reasoning to improve
the coherence of an outfit. The well-studied outfit completion
task [18], [20], [68] focuses on predicting the missing item that
best completes a partial outfit. Formally, given an incomplete
outfit o_; missing its i-th item, the objective is to select the
item that best aligns with the remaining ones and the user’s
style preferences. We additionally consider identifying, given
a complete outfit o, the item whose removal yields the most
coherent remaining outfit, referred to as the outlier detection
task.

User profiling. Given a new user with a limited number
of observed outfits, we aim to infer a representative user
embedding p that captures the user’s style preferences. This
enables fast adaptation of personalized outfit composition from
limited user samples.

Most existing studies address these tasks independently with
task-specific objectives and formulations. In this work, we
present a unified modeling framework that expresses these
tasks within a common mathematical form, where the same
formulation principle is applied to different reasoning targets
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depending on the task objective. This unified treatment pro-
vides a coherent theoretical basis, allowing analytical insights
and methodological advances obtained from one task to be nat-
urally transferred and generalized to others, thereby offering
a consistent foundation for personalized outfit composition.

IV. UNIFIED PREDICTION FORMULATION

We develop a unified probabilistic formulation as the foun-
dation for all personalized outfit composition tasks.

A. Probabilistic formulation

Let z € S%! denote an embedding on the unit hypersphere,
representing a generic entity such as an outfit or an item. Let €2
be the corresponding sample space. The predictive distribution
of z is defined as

exp(kwTz)

p(ziw, k) = 5 (1)

weq €XP(RwTx)’

where w € S%1 is the mean direction and % > 0 controls
the sharpness [69]. This serves as a directional analogue of
softmax, measuring alignment on the hypersphere.

B. Personalized modeling

To capture user-specific variation, we introduce a user
embedding p € S?~! representing deviation from the global
preference w, and a learnable weight A > 0 controlling the
strength of the global component. The personalized predictive
model is

exp(s(\w + 1)T2)
weo eXP(F(Aw + p)Tx)’

p(ziw, p, k) = 5 2

Rewriting it gives
K:/
S A1 < — <A1 (3)
u K

It shows that personalization simultaneously rotates the global
direction toward their preference and adjusts concentration.
Greater deviation from the global preference makes the distri-
bution flatter, whereas stronger alignment sharpens it.

C. Likelihood estimation

Each task maximizes the likelihood of observed samples
under Eq. (2). Because () is large, we approximate the nor-
malization term by sampling K candidates {z;}X ; with one
positive and K —1 negatives. The likelihood objective is then

exp(k(Aw + p)Tz;)
Zi{:l exp (K(Aw + p)T2z)
which follows the InfoNCE formulation and thus provides a

lower bound on the mutual information I(u; z) [70]1-[73].
Intuitively, maximizing Jyvpg encourages the model to

assign high likelihood to observed samples p(z|w). At the
optimum, the critic satisfies

Jue = E

“)

K(Aw + p)Tz = log p(z|p) + c(p), Q)

where c¢(p) is a normalization constant depending only on g
and thus does not affect relative scores among different z for
a fixed p. Rewriting the conditional term gives

r(Aw + p)Tz oclogp(z|p) /p(2) +logp(2),  (6)

which naturally decomposes into two components: AwTz
represents the global popularity, while puTz captures user-
specific deviation, disentangled from the global bias.

D. User adaptation

In practice, new users may appear after the prediction model
has been trained, requiring personalized parameters to be
estimated without retraining the full model. Given a small
set of S independent samples {z;}7 ;, the task reduces to
estimating the posterior:

S

,zs) o< p(p) [ [ p(zil)- (7)

i=1

p(plz1, ...

where S is typically small. Assuming a uniform prior p(u),
the problem is equivalent to maximum likelihood estimation,
whose optimal solution is the mean direction of the samples:

25:1 Zi
S .
12250 =il
This closed-form estimator is computationally efficient but
depends on how well the global preference w and the user-

specific preference p are decoupled as dicsussed in Eq. 6.
When this separation is imperfect, we adopt an ad-hoc
refinement [22]. Let ¢ denote the set of existing user em-

beddings. A new user is initialized by prototype matching:

*

no=z= ®)

pu* =argmaxzTpu. 9)
HEY
To better account for diverse user tastes, each user can be
represented by m variables in ¢, and the new user’s embedding
is constructed by aggregating the m most similar ones:
m

iy} = argmax Y z2Tp,.
B €Y i=1

{pi,... (10)
Both approaches aim to maximize the posterior for new users.
The closed-form estimator in Eq. (8) provides an analytic
solution, while the prototype-based refinement improves ro-
bustness when global and personalized factors are not well
separated.

E. Interpretation

The unified model provides a common probabilistic frame-
work for all tasks. Each task applies this framework by
defining probabilistic relations over different variables and
sample spaces, for example between outfits, items, and user
representations. From this perspective, the objectives of all
tasks can be viewed as estimating directional likelihoods on
the unit sphere and maximizing mutual information between
learned representations and user preferences. This formulation
offers a coherent theoretical foundation for analyzing each task
within a single unified principle.
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Fig. 2. Overall framework of the proposed model. Given an outfit, the inter-item relationships are captured through stacked self-attention layers, and the
resulting features are aggregated into a compact outfit embedding via attentive pooling. These embeddings are then used by task-specific prediction headers

for different outfit composition tasks.

V. OVERALL FRAMEWORK

As illustrated in Fig. 2, our framework consists of a unified
outfit encoder and several task-specific prediction headers.
The encoder captures inter-item relationships within an outfit
through stacked self-attention layers, producing contextual
item embeddings F € R™*9, These contextual embeddings are
then aggregated via attentive pooling into a compact outfit em-
bedding o € R?. The prediction headers leverage this shared
representation to handle multiple outfit composition tasks in a
unified manner, including personalized recommendation, outfit
completion, and outlier detection. This section focuses on
the encoder design and the learning of contextual and outfit
embeddings using the self-attention mechanism [26], while the
task-specific learning objectives are described in subsequent
sections.

A. Categorical encoding

Each item belongs to a fashion category, such as top, bottom
and shoes, which provides extra information for learning an
informative outfit embedding. For example, an outfit with
multiple pairs of shoes would be incongruous, while an
outfit missing item from any major fashion category would
be incomplete. The category information can determine the
relative importance of items in an outfit, and thereby helps
the outfit embedding learning. Previous works [1], [6] have
also shown that learning compatibility in sub-spaces, which
are conditioned on the categories, can greatly improve the
performance.

We build a vocabulary E € R¢*¢ for categorical embedding,
where ¢ is the number of item categories and d is the
dimension. The elements of E are learnable parameters. The
categorical embedding is added to the item embedding to
enhance the item representation, i.e.

X' =X +C (11)

where C € R™"*? with the i-th row fetched from E being
the corresponding categorical embedding of the i-th item in
X. Similar to positional encoding [29], we use the additive
embedding for category information and learn the underlying
relationships between items by self-attention without explicitly
modeling. For simplicity, we will omit the superscript “/” and

use X to denote both item features with and without the
categorical encoding.

B. Multi-head attention

We first introduce the attention mechanism, a basic compo-
nent for augmenting item representation, and then introduce
its extended form, the multi-head attention. Given a set of n
query vectors Q € R™*?  an attention function [29] updates
them via m key-value pairs K € R™*4 V ¢ R™*4, For
brevity, we set the dimension of all vectors to be the same as
the query vectors. Each output vector is a weighted sum of
the value vectors in 'V with the weights being computed by
the inner product between the query and the key vectors in K.

QKT
Vd

The multi-head attention extends the above function by pro-
jecting the triplet (Q, K, V) into h subspaces and concatenat-
ing the outputs in each subspace. h is known as the number
of heads. For ease of description, this process is succinctly
expressed as MultiHead(Q, K, V).

Attention(Q, K, V) = Softmax( WV (12)

C. Outfit self-attention

Given the features X € R™*4 of the n items in an outfit,
we employ the induced self-attention block (ISAB) [22], [26]
to capture inter-item relationships while accounting for the
unequal importance of different items.

ISAB(X) = MultiHead(X, P, P) € R"*¢,

13
where P = MultiHead(I, X, X) € RP*?, (13)

Here, I € RP*? denotes p learnable inducing points that
aggregate global information from the n items and decode
it back to item-level representations. As a simpler alternative,
a standard self-attention layer can also be used:

SAB(X) = MultiHead(X, X, X) € R"*¢, (14)

which directly computes full item-to-item interactions without
introducing inducing points.

The output is refined using residual connections, layer
normalization, and a feedforward network:

SelfAttn(X) = LayerNorm(H + o(H)),

15)
where H = LayerNorm (X + ISAB(X)) .
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o(-) is a row-wise feedforward layer, and LayerNorm(-)
denotes layer normalization [74].

Stacking multiple SelfAttn(-) layers models higher-order
relationships among outfit items:

F = SelfAttn, (X) € R™*?, (16)

where L is the number of layers.

D. Outfit attentive Pooling

To get a fixed length outfit representation regardless of the
number of items in it, we use a vector s € R? to aggregate
the previous output F as follows:

o = LayerNorm(h + o(h))

where h = LayerNorm (s + MultiHead(s, F, F)) an

where s is learned as a model parameter. The outfit attentive
pooling produces a single compact vector o € R? for an outfit.
It can be easily seen that the transformation from n items X
to a single outfit embedding o is invariant to the permuta-
tion of items. With the compact outfit embedding, different
downstream tasks can be handled easily and accordantly.

VI. OPTIMIZATION

Based on the unified probabilistic formulation in Section IV,
we now instantiate the prediction model and objective for
specific tasks.

A. Outfit recommendation

The task aims to assess whether a set of items {x;}}"_; form

a compatible outfit that matches the user’s style. Following

Eq. (2), we define the personalized scoring function as:

f(0§w7ﬂ'u7/\) = (Aw—i_lj’u)TOa (18)

where w encodes global compatibility and p,, captures user-

specific preference. This task-specific instantiation of the uni-
fied framework is denoted as model-r.

Objective function: For each user, created outfits are treated

as positive samples, and others as negatives sampled from €.

Given K candidate outfits 01.x with one positive, the objective
directly follows the likelihood in Eq. (4):

exp (R(Mw + p,)70:)
S exp (k(Aw + p,)Toy)

L,=E|—log (19)

This corresponds to maximizing the mutual information be-
tween users and their preferred outfits.

New user profiling: For a new user v with S outfits
{0;}:.,, the personalized embedding is estimated in closed
form from Eq. (8):

S
* Zi:l O;

My =~ (20)
> i1 ol

B. Outfit completion

The goal of outfit completion is to select the most compat-
ible item for a partial outfit. We define the scoring function
as

f(xi;o—iaw7l'l’ua/\) = ()‘w+”u)qu7 21
where g, is the item representation before outfit-attentive pool-
ing. This task-specific instantiation of the unified framework
is denoted as model-c.

Objective function: For each user, the ground-truth com-
pleting item is treated as a positive sample, and other sampled
items as negatives. Given K candidate items gkk = 15 with
one positive, the objective directly follows the likelihood in

Eq. (4):

exp(k(0_; + Aw + p,,)7q;)
S exp(r(0—; + Aw + p,)Tqy)

L.=E|—log (22)

This corresponds to maximizing the conditional mutual infor-
mation between users and items given the partial outfit.

New user profiling: Let {o;}:_, be the set of outfits for a
new user v, and {g;;}"*, the corresponding items in the i-th
outfit with n; items. The closed-form estimator is computed
as:

S n;
o = Z;*I Zij T (23)
HEiﬂ Zj:l q;;

Decoupling o and g in outfit completion is challenging due
to conditional dependence, the ad-hoc solution is expected to
outperform the closed-form solution.

C. Outlier item detection

The goal of outlier item detection is to identify elements
within an outfit that are incompatible with the overall style.
We define the scoring function as

f(xi;o—iawvl*l’u7/\) = ()‘w+”u)nga (24)
where g, is the item representation before outfit-attentive pool-
ing. This task-specific instantiation of the unified framework
is denoted as model-d.

Objective function. The item set {2 for this task contains
all items within an outfit, the objective function is then defined
as:

— Tg.
Ly =E|log nexp( K(Aw + p,)7g;)

25
o1 EXP(—K(Aw + 1, )Tgy) =

User adaptation. For new users providing only positive
outfits, we estimate user preference by the mean direction of
all attended item embeddings:

S Uz
* Zi:1 Z]:l g’l] (26)

Hy = S i .
(D2 Z;:l gin
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TABLE I
COMPARISON OF DIFFERENT METHODS ON COMPATIBILITY PREDICTION TASK.

Method Category Polyvore Maryland Polyvore Outfit-D Polyvore Outfits
Encoding AUC NDCG  FITB AUC NDCG FITB AUC NDCG FITB
SiameseNet [13] - 09165 0.8883  0.6203 | 0.8444 0.7817 0.5774 | 0.8744 0.8316  0.5823
Bi-LSTM [2] - 0.9424  0.9200 0.7016 | 0.7577 0.6970  0.5442 | 0.8055 0.7515  0.5859
CSN [6] v 09314 09013 0.6580 | 0.8502 0.7889  0.5580 | 0.8798  0.8333  0.5809
SCE-Net [7] - 09160 0.8890  0.6170 | 0.8506  0.7906  0.5534 | 0.8998  0.8592  0.6030
NGNN [16] v 0.9485 0.9239  0.5811 | 0.8416 0.7958 0.4834 | 0.9037 0.8766  0.5500
Model-r v 0.9735  0.9600 0.6989 | 0.8731 0.8377 0.5436 | 0.9259 0.9049  0.6039

D. Alternative modeling

The formulations of outfit completion and outlier detection
are not unique. For example, in the outfit completion task,
the similarity between a candidate item and the embedding
of the incomplete outfit can also be used for prediction.
Similarly, for outlier detection, the similarity between the outfit
embedding and each item representation can be computed to
identify inconsistent elements within the outfit. In this work,
we keep the formulation simple and unified across tasks,
while exploring richer outfit-item interactions is left for future
research.

VII. EXPERIMENTS

In this section, we compare our approach with state-of-the-
art methods on various fashion datasets.

Fashion datasets. We consider four datasets: Polyvore
Maryland [2], Polyvore UIUC [6], Polyvore-Us [8], and
IQON-3000 [21]. Polyvore Maryland and Polyvore UIUC,
widely used for compatibility prediction, lack user data.
Polyvore UIUC has two versions: Polyvore Outfits-D, where
items don’t overlap between training and testing sets, making it
more challenging, and Polyvore Outfits. Polyvore-Us datasets,
defined by user count U, have four versions: Polyvore-
519, Polyvore-630, Polyvore-32, and Polyvore-53. We use
Polyvore-630/519 for personalized outfit recommendation and
Polyvore-53/32 for new user profiling. Each user has 200
training and 40 testing outfits, each containing 3 items from
different categories. For IQON-3000, we filter 608 users,
retaining those with 85 training and 20 testing outfits, each
containing 3-8 items across 8 categories. Users are split into
two groups, forming IQON-550 and IQON-58.

Evaluation metrics. To evaluate outfit recommendation
accuracy, we consider the Area Under the ROC curve (AUC)
and the Normalized Discounted Cumulative Gain (NDCG)
used in previous works [1], [8]. These metrics assess the
ranking quality of positive and negative outfits. The testing set
maintains a 1:10 ratio, with performance averaged across users
for personalized datasets. For outfit completion, we measure
FITB [2] accuracy using varying candidate sizes. Outlier item
detection is evaluated via averaged detection accuracy. As no
existing dataset is available, we generate one by randomly
replacing an item in each outfit.

Baseline methods. We compare our models with sev-
eral state-of-the-art methods: SiameseNet [13], Bi-LSTM [2],
CSN [6], SCE-Net [7], NGNN [16], FNH [9], and Outfit-
Net [18]. SiameseNet maximizes similarity between positive

item pairs and minimizes it for negative pairs using met-
ric learning. Bi-LSTM [2] treats compatibility prediction as
an item prediction problem, using a bidirectional LSTM to
maximize the likelihood of positive outfits. CSN [6] embeds
item pairs into distinct subspaces to learn conditional sim-
ilarities [14] by incorporating category information in item
embeddings. SCE-Net learns multiple conditional item em-
beddings, weighting each via an attention mechanism. NGNN
constructs a fashion graph from category co-occurrence and
trains outfit compatibility using a graph convolutional network.
FNH models outfit compatibility and user preferences in a
pairwise manner. Since FNH is hash-based, we train it without
binarization for fair comparison. Outfit-Net employs multiple-
instance learning and attention to capture users’ fashion pref-
erences for personalized recommendations.

Implementation details. The item features are extracted
from images with ResNet-34 [75] and used as the input for
all methods for fair comparison. We set the latent dimension to
128 and SGD with momentum [76] is used for all methods. For
our methods, we use x = 10 buy default, and set the number of
self-attention layer to 2. The learning rates are reduced when
the accuracy stops increasing on validation set and the initial
learning rate is 0.01 for all tasks. All methods are implemented
with PyTorch. For the outfit recommendation task and outfit
completion task, we set the number of negatives to 32 and use
ISAB to learn outfit embedding.

A. Outfit recommendation

Compatibility prediction is the essential problem for outfit
recommendation. We first use Polyvore Maryland [2] and
Polyvore UIUC [6] to evaluate the performance on compat-
ibility prediction tasks. The comparison results are shown
in Table I. Our models achieve the superior performance on
ranking metrics, i.e. AUC and NDCG, across all datasets even
without the categorical information. We believe that due to the
self-attention mechanism [26], [29], the resulting outfit embed-
ding can better capture the underlying high-order relationships
among multiple items. Besides, adding the categorical infor-
mation can sustainably improve the recommendation accuracy
as expected.

Another finding is that models that perform well in rank-
ing accuracy may not necessarily perform well in the outfit
completion task, and vice versa. For example, while NGNN
achieves the highest AUC in the baseline methods across all
datasets, it obtains the lowest FITB accuracy. On the other
hand, the Bi-LSTM model performs worst poorly on the AUC
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TABLE II
COMPARISON OF DIFFERENT METHODS ON PERSONALIZED OUTFIT RECOMMENDATION TASK.

Method Category Polyvore-519 Polyvore-630 IQON-550
ctho Encoding || AUC __NDCG  FITB | AUC _NDCG FITB | AUC NDCG _ FITB
SiameseNet [13] 0.7956  0.6139 0.5250 | 0.7737 0.6019  0.5065 | 0.8065 0.6532 0.4778
Bi-LSTM [2] - 0.8142 0.6467 0.5427 | 0.7846  0.6336  0.5156 | 0.8127 0.6650 0.5139
CSN [6] v 0.7825 0.6127 0.5043 | 0.7718 0.6038  0.4983 | 0.7980  0.6381  0.4797
SCE-Net [7] - 0.8078  0.6527 0.5336 | 0.8020 0.6580  0.5297 | 0.8228  0.6823  0.4896
Outfit-Net [18] - 08175 0.6671 0.4621 | 0.8411 0.7152  0.5002 | 0.8308 0.6956  0.4291
NGNN [16] v 0.8230  0.6640 0.5280 | 0.7784  0.5918 0.4935 | 0.8601 0.7613  0.4920
FHN [8] v 09015 0.8298 0.6038 | 0.8960 0.8229  0.6060 | 0.8973  0.8152  0.5402
Model-r - 09215 0.8607 0.6381 | 0.9006 0.8233 0.6099 | 0.9325 0.8853  0.5740
Model-r v 0.9294 0.8704 0.6581 | 0.9075 0.8342 0.6258 | 0.9427 0.8967 0.6024
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Fig. 3. The outfit recommendation results for different users.
in two Polyvore UIUC datasets, but still achieves a comparable TABLE III

FITB accuracy due to its item prediction pipeline. The reason
for such discrepancies is that the outfit completion task focuses
more on individual items, while the outfit recommendation
task focuses more on global style. As a result, the compatibility
score needs to be sensitive to changes in individual items,
which may not always be fulfilled. To address this limitation,
an appropriate strategy is needed for the outfit completion
task. We provide the compatibility-based FITB accuracy as a
reference for outfit recommendation tasks and leave a detailed
discussion for later sections.

For personalized outfit recommendation task, we compare
our model with state-of-the-art approaches in Table II, where
Polyvore-U's [8] and IQON [22] are used. As we can see, our
models achieve the best performance on all metrics including
the FITB accuracy. On Polyvore-630, the improvement in
AUC is relatively small because all outfits contain exactly three
items with clear category boundaries, where the rigid pairwise
tensor decomposition in models such as FHN can already
capture most compatibility relations. Nevertheless, our model
achieves higher NDCG and FITB scores, indicating more
accurate ranking calibration and finer item-level reasoning.
For Polyvore-519 and IQON-550, where outfit sizes vary, the
advantages of our model are more evident across all metrics.

Interpretability of recommendations. With the compact
outfit embedding, for each recommended outfit, we can re-
trieve similar outfits from the user’s past selections to support

COMPARISON OF DIFFERENT METHODS ON THE COMPLETION TASK.

Method Polyvore | Polyvore | Polyvore | Polyvore | Polyvore | IQON
Maryland | Outfits-D | Outfits 519 630 550
Bi-LSTM || 0.7016 0.5442 | 0.5859 | 0.5427 | 0.5156 |0.5139
CSN 0.6580 0.5580 | 0.5809 | 0.5043 | 0.4983 |0.4797
SCE-Net 0.6170 0.5534 | 0.6030 | 0.5336 | 0.5297 |0.4896
NGNN 0.5811 0.4788 | 0.5500 | 0.5276 | 0.4897 |0.4920
Outfit-Net - - - 0.4621 | 0.5002 |0.4291
FHN — — — 0.6038 | 0.6060 |0.5402
Model-r 0.6981 0.5436 | 0.6039 | 0.6581 | 0.6258 |0.6024
Model-c 0.7291 0.5781 | 0.6483 | 0.6660 | 0.6323 |0.6153
TABLE IV
COMPARISON OF DIFFERENT METHODS ON OUTLIER ITEM DETECTION.
Method Polyvore | Polyvore | Polyvore | Polyvore | Polyvore | IQON
Maryland | Outfits-D | Outfits 519 630 550
Bi-LSTM || 0.5663 0.4033 | 0.4225 | 0.5066 | 0.4998 |0.3530
CSN 0.5433 0.4971 | 0.5099 | 0.5047 | 0.5160 |0.3883
SCE-Net 0.5233 0.5030 | 0.5325 | 0.5261 | 0.5128 |0.4175
Model-d 0.6653 0.5342 | 0.5885 | 0.6849 | 0.6777 | 0.5580

the recommendation results. Since other baseline methods do
not establish the similarity measurements between outfits, we
only show examples of ours in Fig. 3. Outfits at the top
are the recommended ones, and outfits at the bottom are
support outfits from the training set. We also show the cosine
similarities between the recommended ones and support ones.
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TABLE V
PER-CATEGORY PERFORMANCE ON THE IQON-550 DATASET FOR OUTFIT
COMPLETION (MODEL-c) AND OUTLIER DETECTION (MODEL-d). HIGHER
VALUES INDICATE BETTER COMPATIBILITY UNDERSTANDING.

Type  |Accessories Bag Bottom Coat Dress Hat Shoes Top
Model-c| 0.6048 0.6110 0.5957 0.5654 0.6368 0.6526 0.6756 0.6058
Model-d| 0.5403 0.5485 0.5372 0.5042 0.6074 0.5919 0.6090 0.5519
0.36 0.57 0.37
Replaced A ‘ A
0.35 0.61
Original
Replaced
Original

Fig. 4. The outlier item detection results. Scores indicate the compatibility of
each item with the outfit, with a red box highlighting the ground-truth item
that was replaced.

As we can see, the similar visual style of the support outfits
do help to interpret the recommendation results.

B. Outfit refinement

Outfit completion and outlier item detection are the two
basic outfit refinement tasks.

Outfit completion. Outfit completion involves selecting
the most suitable item to fit an incomplete outfit from a
set of candidate items, while outlier item detection involves
detecting the most incompatible item for a given outfit. As
discussed, using the overall compatibility for item prediction
is suboptimal, so we propose a new formula in Eq. (21) to
focus more on individual items. The comparison results are
shown in Table III. For Outfit-Net and FHN, we only use
their performance on personalized datasets. As we can see, our
proposed model-c not only improve the performance over the
compatibility-based model, but also significantly outperforms
other baselines.

Outlier item detection. To evaluate outlier item detection,
we created a new dataset by randomly replacing one item
from each positive outfit, and treating the replaced item as
the outlier. We only consider the case where there is only
one outlier and the results are shown in Table IV. Since
the task has not been studied before, we only compare with
the pairwise models and Bi-LSTM. For pairwise models,
we use the averaged similarity of an item with others as
the compatibility score. For the Bi-LSTM, we use the log
probability of each item as the compatibility score. And the
item with the lowest compatibility is selected as the outlier. As

Original

Replaced

3.99

Fig. 5. A failure case of outlier detection on the IQON-550 dataset. The top
row shows the original compatible outfit, while the bottom row displays the
outfit after replacing the coat. The model incorrectly identifies the scarf as
the outlier instead of the replaced coat.

5.03 5.86 5.89 3.74

Score

we can see, our model significantly outperforms the baselines
on all datasets. Fig. 4 shows examples of outlier detection
results where the outlier items are successfully detected.

Per-category analysis. To further understand task-specific
behavior, we analyze the per-category performance of our
models, as shown in Table V. Categories such as dress, hat,
and shoes achieve the highest accuracy because they are
visually salient and stylistically distinctive. Replacing these
items easily disrupts outfit coherence, making inconsistencies
easier to detect or complete. In contrast, the coat category
shows the lowest performance, as it often dominates the overall
outfit style; replacing it drastically changes the visual context,
while predicting it is challenging due to its large intra-class
variation. Meanwhile, accessories and bags yield moderate
accuracy since they exert weaker influence on the global style
and appear less frequently in the dataset.

These quantitative findings motivate a closer look at typical
failure cases. As illustrated in Fig. 5, the model incorrectly
identifies the scarf as the outlier instead of the replaced coat.
This occurs because the coat largely determines the outfit’s
overall style, making it difficult for the model to discern
whether the incompatibility arises from the replaced coat itself
or from its strong stylistic influence on the remaining items.

C. New user profiling

In real-world applications, learning the preferences of new
users with limited feedback is an important problem. Fine-
tuning the whole model for new users is computationally
expensive. Besides, since newly joined users usually have
limited data, the model is prone to over-fitting. This raises
the question of how well we can learn from such limited data.
In this section, we test the performance when each new user
has only 1, 5, or 10 outfits for learning.

We first show the performance of different strategies in Ta-
ble VI, where we use 16 vectors to expand the search space for
the ad-hoc strategy. We further use two models for comparison,
one trained without @ and the other a personalized model that
drop p during evaluation. The model trained without g usually
achieves better performance, and the personalized model is
used to demonstrate how much improvement we can get from
limited data. As we can see, for outfit recommendation task,
both ad-hoc and close-from solutions achieve notable improve-
ment. This shows that our proposed methods can efficiently
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TABLE VI
NEW USER PROFILING ON DIFFERENT TASKS WITH DIFFERENT NUMBER OF AVAILABLE OUTFITS. FOR OUTFIT RECOMMENDATION TASK WE USE AUC AS
THE METRIC, FOR OUTFIT COMPLEATION TASK WE USE 4 CANDIDATE ITEMS TO EVALUATE THE ACCURACY, AND FOR OUTLIER DETECTION TASKS, WE
USE THE DETECTION ACCURACY.

Polyvore-32 Polyvore-53 IQON-58
Model | Strategy T 5 10 T 5 10 T 5 10
Modelr | wio 2 0.8459 7 0.8346 0.7710 7 0.7602 0.8756 7 0.8783
Model-r | Ad-hoc 08491 08672 08807 | 07917 08240 08387 | 0.8920 0.8967 0.9047
Model-r | Closed-form || 0.8505 0.8793  0.8921 | 07924 0.8319 0.8480 | 0.8890 08962  0.9044
Modelc | wio 2 05797 1 0.5634 0.5218 7 05021 0.5495 7 05362
Model-r | Ad-hoc 08497 08672 08807 | 07917 08240 08357 | 0.8920 0.8967 0.9047
Model-r | Closed-form || 0.8505 0.8793  0.8921 | 0.7924 0.8319 0.8480 | 0.8890 08962  0.9044
Model-d | w/o 12 05855 705550 05467 7 0.4902 04913 7 0.4758
Model-d | Ad-hoc 05699 0.6037 06210 | 0.5341 0.5486  0.5684 | 04852 0.4982  0.4983
Model-d | Closed-form || 0.5925 0.6164 0.6225 | 05029 05367 0.5445 | 0.4937 04969 0.4958
TABLE VII

COMPARISON OF BASELINE METHODS ON NEW USER TASKS WITH DIFFERENT NUMBER OF AVAILABLE OUTFITS.

Category Polyvore-32 Polyvore-53 IQON-58

Method Encoding T 3 10 T 5 10 T 5 10

SiameseNet 0.7690 0.7870  0.7925 | 0.7363  0.7439  0.7478 | 0.7610 0.7655  0.7701
Bi-LSTM [2] - 0.8152  0.8140 0.8106 | 0.7657 0.7634  0.7636 | 0.7929  0.7926  0.7943
CSN [6] v 0.7676  0.7829  0.7849 | 0.7386 0.7471 0.7518 | 0.7574 0.7591  0.7635
SCE-Net [7] - 0.7974  0.8064 0.8093 | 0.7752 0.7768  0.7680 | 0.7829  0.7764  0.7801
Outfit-Net - 0.6014 0.6794 0.7124 | 0.6005 0.6925 0.7167 | 0.6072  0.6578 0.7171
NGNN v 0.8154 0.8231 0.8276 | 0.7554 0.7635 0.7653 | 0.8346  0.8425 0.8435
FNH v 0.7537  0.8267 0.8528 | 0.7342  0.8066  0.8365 | 0.7982  0.8440 0.8610
Model-r - 0.8453 0.8693 0.8843 | 0.7876  0.8332  0.8497 | 0.8679 0.8790  0.8884
Model-r 0.8505 0.8793  0.8921 | 0.7920 0.8345 0.8498 | 0.8890 0.8962 0.9044

learn user preferences with limited feedback. Besides, the
closed-form solution achieves the best accuracy on Polyvore-
32/53 and similar performance on IQON-58. The reason is
that, in outfit recommendation task, the general preference and
user preference are well decoupled, i.e. the general preference
can sufficiently captures the user indenepent term in Eq. (6).
However, for outfit completion, this task is more challenging
as it involves modeling the conditional mutual information
between users and items. As a result, our method does not
show a clear advantage, but performs comparably to the ad-
hoc strategy. The same holds for outlier detection task.

We further evaluate the outfit recommendation task under
the new user profiling setting. As shown in Table VII,
our model achieves the best overall performance. For non-
personalized methods, the entire pre-trained model is fine-
tuned, while personalized ones re-train only the user-related
parameters. Our method uses the closed-form solution. As
illustrated in Fig. 6, when only a few outfits are available (e.g.,
fewer than 10), the closed-form solution performs notably
better. As the number increases, fine-tuning gradually sur-
passes it due to the use of negative outfits for learning a more
discriminative decision function. Nevertheless, the closed-form
solution remains highly competitive.

D. Ablation study

In the prediction model, we use general preference and user
preference to learn different information about the data. For
outfit recommendation, the general preference is a learnable
parameter, and for outfit refinement, the general preference is

Polyvore-32 Polyvore-53 IQON-58
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Fig. 6. Detailed performance of new user profiling tasks.

TABLE VIII
EFFECT OF CATEGORY ENCODING ON DIFFERENT MODELS

Method g;;%?% Polyvore-519  Polyvore-630  IQON-550
Model-r - 0.9215 0.9006 0.9325
Model-r v 0.9294 0.9075 0.9427
Model-c - 0.6626 0.6385 0.5964
Model-c v 0.6720 0.6354 0.6320
Model-d - 0.6780 0.6736 0.5247
Model-d v 0.6934 0.6839 0.5770
TABLE IX
PERFORMANCE OF MODEL-7 ON THE OUTFIT RECOMMENDATION TASK.
Model w Polyvore-519 Polyvore-630 IQON-550
AUC NDCG | AUC NDCG | AUC _NDCG
Model-r | — || 0.9279 0.8708 | 0.9082 0.8358 | 0.9465 0.9043
Model-r | v || 0.9294 0.8704 | 0.9075 0.8342 | 0.9427 0.8967

the outfit embedding. In this section, we show the contribution
of different preference terms.

On categorical encoding: We conduct an ablation study to
examine the influence of category encoding across different
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TABLE X
EVALUATION ON HARD NEGATIVES USING ONLY PRETRAINED USER
EMBEDDINGS gt (I.E., ELIMINATING GENERAL PREFERENCE w DURING

EVALUATION).
Model w Polyvore-519 Polyvore-630 IQON-550
AUC NDCG | AUC NDCG | AUC NDCG
Model-r | — || 0.7622 0.6050 | 0.7817 0.6240 | 0.7011 0.5375
Model-r | v || 0.8480 0.7086 | 0.8406 0.7009 | 0.8220 0.6568

TABLE XI
CONTRIBUTION OF GENERAL PREFERENCE w ON NEW USER PROFILING
TASKS ON MODEL-T.

Strategy w

Polyvore-32

Polyvore-53

IQON-58

1 5 10

1 5 10

1 5 10

Ad-hoc

<1

0.844 0.858 0.872
0.849 0.867 0.881

0.790 0.805 0.820
0.792 0.824 0.839

0.880 0.893 0.897
0.892 0.897 0.905

Closed-form

N

0.676 0.805 0.840
0.851 0.879 0.892

0.631 0.718 0.749
0.792 0.832 0.848

0.659 0.766 0.810
0.889 0.896 0.904

TABLE XII
THE CONTRIBUTION OF USER PREFERENCE gt FOR OUTFIT
RECOMMENDATION AND OUTFIT REFINEMENT TASKS. FOR MODEL-7, WE
USE AUC AS THE METRIC, AND FOR MODEL-c, WE USE 4 CANDIDATE
ITEMS TO EVALUATE THE ACCURACY.

Method ) Polyvore-519  Polyvore-630  IQON-550
Model-r | — 0.8521 0.8108 0.9094
Model-r | v 0.9294 0.9075 0.9427
Model-c | — 0.5991 0.5539 0.5896
Model-c | v 0.6720 0.6354 0.6265
Model-d | — 0.5971 0.5742 0.5251
Model-d | v 0.6934 0.6839 0.5770

tasks, as shown in Table VIII. The results show that enabling
category encoding consistently improves performance on all
tasks, with the most significant gains observed in the outfit
completion and outlier detection tasks. This suggests that
category encoding plays a more critical role when the model
needs to reason about item categories, such as identifying
missing or inconsistent items, rather than when performing
overall outfit scoring.

On general preference: We study the role of the general
preference vector w in the outfit recommendation task. While
w captures user-independent signals, our re-parametrization
shows that the model can be trained equally well without it.
As shown in Table IX, using only the user-specific embedding
1 yields nearly identical performance, suggesting that w is not
essential for accurate recommendations on these datasets.

However, we find that training with the general preference
vector w still results in a more structured latent space. To
demonstrate this, we evaluate the pretrained models on hard
negatives, which refer to outfits that are positively rated by
other users, and present the results in Table X. During this
evaluation, we exclude w from the scoring function in both
variants and rely solely on the user-specific embedding .
Despite the absence of w at inference, the model trained with
it consistently outperforms the one trained without it. This
indicates that incorporating general preference during training
helps decouple user-specific and global signals, leading to
better generalization even when only user-specific information
is used at test time.

TABLE XIII
MULTI-TASK LEARNING. AUC FOR OUTFIT RECOMMENDATION (7T),
ACCURACY WITH FOUR CANDIDATE ITEMS FOR OUTFIT COMPLETION
(T¢), AND DETECTION ACCURACY FOR OUTLIER DETECTION (7y).

Dataset Model Ty Te Ty
Polyvora 10 | Smele-ask || 09289 0.6060 0.6849
Multi-task || 0.9308 0.6701  0.6894
Polyvore630 | SIMEle-wsk || 09079 06323 0.6777
Multi-task || 0.9108  0.6396  0.6819
Single-task || 0.9401 06153 05584
IQON-550 1 Multictask || 0.9433  0.6225  0.5621

This decoupling is critical in the new user profiling scenario,
as shown in Table XI. The closed-form solution, which relies
on clean separation between w and p, performs poorly with-
out w. In contrast, the ad-hoc strategy remains more robust
because the learned user embeddings implicitly absorb both
general and specific preferences. Still, both strategies benefit
from explicitly modeling w during training.

On user preference: In personalized outfit recommenda-
tion, user information is important to the performance as
shown in previous works. In this section, we further show
that user preference also contributes to the outfit refinement
tasks, i.e outfit completion and outlier detection. We report the
performance of whether using user preference on Table XII.
As we can see, introducing the user preference term can sus-
tainably improve the performance on different tasks. Similar
to outfit reccommendation, where different users have different
bias on outfit, users also have different preferences for different
items in the outfit refinement tasks.

On multi-tasking learning: We further explore the poten-
tial of a unified framework to jointly handle multiple outfit-
based recommendation tasks. To this end, we optimize the
following joint objective:

L'rn = £7‘ + ['c + Ed, (27)

where L., L., and L, correspond to outfit recommendation,
outfit completion, and outlier detection, respectively.

As shown in Table XIII, the multi-task model achieves
consistently better performance across all datasets and tasks
compared with single-task training. These results demonstrate
the benefit of joint optimization and confirm that the learned
outfit encoder and user preference representation can be effec-
tively shared across different tasks within a unified framework.

E. Hyper-parameter sensitivity

The concentration parameter « and the number of negatives
K are two important hyper-parameters. The concentration
parameter defines the sharpness of the distribution which can
be sensitive to the performance. The number of negatives
is used for the estimation of likelihood, which gives better
estimation when more negatives are sampled. Therefore, in
this section, we evaluate the performance of our models on
these hyper-parameters.

On different concentration parameters: The prediction
model with small x is flatter and may not be discriminative
between positive and negative samples. On the other hand,
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Fig. 7. Performance of different settings. Top row: Impact of different
values. Bottom row: Impact of different numbers of negatives.

TABLE XIV
COMPARISON OF METHODS ON THE POLYVORE OUTFIT DATASET WITH A
RESNET-18 BACKBONE, ADAPTED FROM TABLE 3 IN [20].

Method Category | Backbone AUC
- Frozen 0.82

Outfit Transformer [20] - Fine-tuned | 0.91
v Fine-tuned | 0.92
— Frozen 0.87

Model-r - Fine-tuned | 0.92
v Fine-tuned | 0.92

TABLE XV

COMPARISON OF DIFFERENT METHODS WITH FROZEN RESNET-18.

Polyvore-630 Polyvore-519
Method AUC  NDCG | AUC _ NDCG
Do-GAT [61] | d =256 || 09107 08412 | 09237 08575
Model-r =256 || 09122 08457 | 0.9320 0.8780
Model-r d=128 || 09092 08370 | 0.9282 0.8696
Model-r d—=64 || 08999 08196 | 0.9207 0.8530

model with large x may overfit, while the back-propagation
can be unstable due to large gradient. Therefore, there is an
optimal « for each task as shown in Fig. 7.

On number of negatives: For outlier item detection task,
since the likelihood is evaluated over the entire outfit, the
probability can be fully computed. Therefore, we only show
the impact of using different number of negatives for outfit
recommendation and outfit completion tasks. The performance
is shown in Fig. 7. For both tasks, using more negatives can
improve the performance as the likelihood estimation becomes
more accurate with more negatives.

On backbones and feature dimension: n this paper, we
extract features using a pre-trained ResNet [75] and project
these to a dimensionality of d = 128 as the input. Fine-tuning
the backbone and increasing the dimensionality usually results
in better performance. To demonstrate this, we evaluate the
recommendation tasks using different strategies, focusing on
whether the backbone is frozen, as illustrated in Table XIV,
and altering the dimensionality when frozen, as shown in
Table XV.

VIII. CONCLUSION

In this paper, we have explored various tasks related to
outfit composition, which require a deep understanding of
the intricate relationships between items in an outfit. We
propose a unified prediction model that can be used for all
tasks by learning a compact outfit embedding in the same
metric of users and items. With the unified framework, we
propose a new user profiling strategy to adapt the model for
users with limited feedback without fine-tuning the model.
We conduct extensive experiments on several large-scale real-
world datasets, demonstrating the superiority of our proposed
methods across different tasks.
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