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Principle, Advantages and Challenges
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RF-based human sensing uses RF signals’ interaction with the human body—via
reflection, absorption, and scattering—for presence, motion, physiological monitoring, etc.

Sensing Principle

1. Transmitted radio waves

\
~ UV Y, L
N .
AN N Ezf:,ic ngnetic
N
Tx N 2. Reflected by target
. ®
\\
__-4
3. Received signal modulated by
Rx * Phase
« Frequency 4. Signal Processing
« Amplitude

Wireless Al interprets omnipresent
RF signals for pervasive sensing.

https://innowings.engg.hku.hk/wireless-ai/
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RF-based human sensing uses RF signals’ interaction with the human body—via
reflection, absorption, and scattering—for presence, motion, physiological monitoring, etc.

Workflow

Sensors

=

Information and Algorithm =) Applications

Measurements and
Techniques

RSSI

Csl

FMCW

Doppler shift

Derived Metrics Associated with
Human Movements

:

Signal Pre-processing

Signal strength variations

Channel condition variations

Frequency shift associated
with human body depth

Frequency shift associated
with human body moving
speed

P

Feature Extraction

-

Prediction via Machine
Learning or Model-based
Methods

.

Applications

Intrusion detection

Room occupancy monitoring
Daily activity recognition
Gesture recognition

Vital signs monitoring

User identification

Indoor localization & tracking

Wireless Sensing for Human Activity (Liu et. al 2020)

Diverse types of RF signals vary
significantly in terms of
processing methods, derived
information, and performance
characteristics.

Router
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Introduction

Principle, Advantages and Challenges

RF-based human sensing uses RF signals’ interaction with the human body—via
reflection, absorption, and scattering—for presence, motion, physiological monitoring, etc.

Applications

voingrerson LOCALION, Breath, Heartbeat

RGB image ‘ D
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) / g::"%é:ﬁ 7 7 i D_ Linear Rx array
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B ‘@' ))) zzz -\\\ I RF clhain I
LH I Signal Generator I Data
OpenPose & /7\ Static Person h '@’ Multi-Port Transcelver m o

Pose estimation (Zhao et. al 2018) Tracking and vital signs (Zhang et. al 2021)

Non- line-of-sight, low-light conditions, privacy-preserving
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RF-based human sensing uses RF signals’ interaction with the human body—via
reflection, absorption, and scattering—for presence, motion, physiological monitoring, etc.

Applications
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ECG Monitoring (Chen et. al 2022)

Imaging (Chen et. al 2022)

Sleep Monitoring (He et. al 2024)

Contactless sensing, user-friendly, cost-effective
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Introduction

Principle, Advantages and Challenges

Challenges
Low spatial resolution: challenges in precisely locating or
differentiating small details.

= Environmental interference: susceptibility to noise from surrounding
objects and signal obstructions.

= Hardware Limitations: dependence on specialized equipment,
which may increase cost and complexity.

= Non-Intuitive Operation: difficulty in interpreting results compared to
traditional, visually-driven methods.
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RF-Based Human Pose Sensing

Pose Estimation Methods

Camera & Wearable Devices RF Signals

[~ (((f))
W

Ix

- occlusions
- lighting conditions
- active cooperation

RF-based: All-weather & Non-intrusive & Privacy-preserving
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RF-Based Human Pose Sensing

Goal

Obtain human behavior and posture information from RF signals, with all-
weather, non-contact and non-line-of-sight characteristics.

Applications

Fall Detection Anti-terrorism Disaster Rescue

rsity of Sci and Technology o fCha
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Introduction

« Challenges

Publicly available human pose estimation Publicly available human pose estimation
datasets based on visual images datasets based on RF signals

sports occupation water activities home activities condition. exerc. fishing and hunt. religious activ.

elliptical trainer

WL »‘f;% s

slimnastics, jazzer.  hunting, bow and arr. standing, talking

Lack of publicly available RF-based human pose sensing datasets




Introduction

« Challenges

Not intuitive
Only existence

1

RF Signals Human Pose

Significant structural difference between the RF signals and the human pose




Introduction

Challenges

RF Sensor {A
;

RF signal specular reflection characteristics

The specular reflection characteristics of the RF signals on the human
body cause the signals to be sparse and incomplete
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Introduction
Our works
[ Open Sourced Dataset J U RF-Based Human Pose Sensing Dataset
A preliminary study O Pose Estimation with Optimal Transport (FITEE 2023)

[ Cross-Domain Alignment J 0 RF-Based Human Pose Estimation with Spatio-Temporal

_ S~~~ . : Attention (TCSVT 2023, TMM 2023)
Accurate sensi Divingato details

[ High Precision ]—’[ Fine-grained Detection ] O RF-Based Human Pose Silhouette Segmentation

(TMM 2022)
PracticaliN/

[ Lightweight Design ] 4 Lightweight Pose Estimation for Mobile Devices
(TMM 2024)

Intuitive outputs

A 4

[ Signal Visualization J 0 Multimodal-Based Human Pose Visualization (TMM 2023)
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RF-Based Human Pose Sensing
Dataset
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RF-Based Human Pose Sensing Dataset

HIBER Dataset https://github.com/Intelligent-Perception-Lab/HIBER

HIBER ( Human Indoor Behavior Exclusive RF dataset )

1
1
1
1
1
I
1
L : HIBER(Human Indoor Behavior Exclusive RF dataset) is an open-source mmWave human behavior recognition
"jz : dataset collected from multiple domains(i.e., various environments, users, occlusions, and actions). It can be
: used to study human position tracking, human behavior recognition, human pose estimation, and human
1
: silhouette generation tasks. The total size of the processed dataset is 400GB, including RF heatmaps, RGB
3 images, 2D/3D human skeletons, bounding boxes, and human silhouette ground truth. Following, we introduce
: the composition and implementation details of this dataset.
1

How to access the HIBER dataset

To obtain the dataset, please sign the agreement by yourself. And additionally:

« |f you are a researcher from China, please ensure that the agreement is stamped with the official seal of
your institution.

« If you are not from China, please ask your director or team leader to sign the agreement.

Once stamped/signed, you can scan and send it to wzwyyx@mail.ustc.edu.cn. Then you will receive a
notification email that includes the download links of the dataset within seven days. Thank you for your
cooperation.

” horizontal RF heatmap




RF-Based Human Pose Sensing Dataset

Problem: To collect RF data and its corresponding human pose.

Challenges
= Manually labeling ground-truth 3D pose for RF signal is infeasible
= Wearable devices, such as Vicon, are very expensive.

———— - - e - -

Solution
= Multi-camera system to obtain the 3D labels

.

Raspberry P1 4B with camera module (x12) -3 ___ & ___ 8 ___,
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RF-Based Human Pose Sensing Dataset

3D Pose

oy

© @ Triangulation
y > N
® Camera System [ -
® &
L0} - @ )

Cl

1. Calibrate the Camera System

2. Get 2D pose for each view

3. Reconstruct 3D pose with triangulation
Note for replication

1. We use the well-known Zhang’s method for camera calibration.
2. Synchronization between cameras 1s crucial.

3. We use AlphaPose (Fang et al. 2022) to create 2d Pose.
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RF-Based Human Pose Sensing Dataset

Radar Device

PR vertical RF heatmap
Model: TI AWR2243

Single Chirp Configuration
77~79 GHz & 79~81 GHz

Two perpendicular radars
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RF-Based Human Pose Sensing Dataset

Sk,m,t is the signal from the k-th FMCW scan on the m-th antenna,
A\, is the wavelength, and d,,(z, y, 2) is the round-trip distance.
Y Y

Signal Processing
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Horizontal grid and corresponding data

Horizontal signal

yhorxya Zzskmt

k=1 m=1

dm(az,y)

Vertical grid and corresponding data

Vertical signal

K M do )
o j27T m\Y,=<
Yver (Y, 2, 1) = E 5 Skm,t * € A

k=1 m=1

For simplicity, each pixel in RF image represents the signal reflected from this 2D grid.



RF-Based Human Pose Sensing Dataset

Signal Processing

multipath interface
static background

Walls
/
— /*
- /1 :
X /| static

AN\
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: Human
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1
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1
1
1

-5 0 5 -5 0 5

Before subtraction After subtraction

We utilize frame differencing to suppress the interface
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RF-Based Human Pose Sensing Dataset

x 10% m Single-Person @ Multi-Person

Data StatIStICS B 1781 16.874
. . m16
o Single or multiple persons g
o Ten different environments 5
: : . - 2 s
o Poses: standing, walking, squatting, sitting 5 s s
o Challenge scenarios: obstruction and darkness ~ * - - -
0 - 0.000
Random walk  Styrofoam Carton Yoga Mat Low lllumination  Action

Statistics of the number of frames in each category

Four Occlusion Scenarios

Ten Collection Environments
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RF-Based Human Pose Estimation
with Optimal Transport



Pose Estimation with Optimal Transport

Cross-domain Pose Alignment and Estimation

RF Signals Feature Space 3D Human Pose
RF/ - Human Pose
@%/\&\_\\l:>
Challenges Advantage
« Measure the difference between RF and « Simplifying mapping complexity
human pose domains « Improving interpretability

* Represent human poses in the feature space « Enabling cross-domain modeling

Yu et al. RFPose-OT. FITEE 2023.



Pose Estimation with Optimal Transport

Preliminary

« Optimal Transport

J
Distributions A (x), B(y) /\* /X dy(z,y) = B(y)-

Transport plan y(z, y)
0 A B v

* Minimum transport cost as metric

) * The minimum transport cost is defined
1111 / C(z,y)dy(z,y) as the optimal transport distance
vEIl(p,v) J X xY

* An optimal transport distance equal to
/ / zero means that the two distributions
cost function  joint distribution over X x Y  are the same
Yu et al. RFPose-OT. FITEE 2023.
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Pose Estimation with Optimal Transport

Model Architecture

Ground-truth 1 Predicted
Pose Keypoints Supervision Pose Domaln __Pose Keypoints
Input = e e — - 7
l p[\ e : ' l Kx3 - 3 I
% | (Zpy Upys o) | 3D Pose Heatmap PP Feature Space ' (Zpy > py > 2p,) |
§ : (2 Pz-yp2-5p2)| = Z e l ( Tpas Upas Zpa ):
> _—> r z

o, (@ pz~1/pz-~pa)l 1 [ Predlctor-r Zps: Ups» Zpa)
g s 3 | ]
|( \ o = (e sty
I Tpscs Ypx » Zpxc | | | \WYrxoIpks <P |

————— |
latent space| - ————————————————————__ D o | :
RF Heatmaps I Distance | |

| .
. Zn | | PKx3: I
I——-»HorSH Sub-Encoder— EE— I (B B ~p1)|
s Y /\f\ : o, on; ~p2)|
IS K int

8 RF Encoder — Preeydpigtlgr L (£p2+ Upa> pz)l
H w Z | |
Pose Coordinates o z, i i
Ver Sv Sub-Encoder—EE}— RF Domain !_ FpraUprs fox |

Yu et al. RFPose-OT. FITEE 2023.



Pose Estimation with Optimal Transport

3D pose heatmap P

Pose Domain
1. Construct the Pose Heatmap , :.:‘/ |
Human Keypoint ’

2 2 2 K
T — + (Y — +(z— 2
Pu(e,y2) =exp |- E o) T U) HEmA) | by N Py, 2)
202 e

2. Loss Functions

Absolute Error Lp=|Prxs — Prx3lls

1 & 1 &
PKx3—f;Pk - pr3_f;pk :

Pose-only Error Lpo =
u et al. RFPose-OT. FITEE 2023.



Pose Estimation with Optimal Transport

RF Domain

1. Learning RF representation with minimal distance to pose space

Lor= [ C(2.2)dv(2..2,),
YA
2. Fine-tuning pose estimator based on RF domain

Absolute Error Lp= HﬁKx?, - PK><3H2

1 & 1 &
pK><3_?;pk - PKx3—E;Pk :

Yu et al. RFPose-OT. FITEE 2023.

Pose-only Error Lpo =



Pose Estimation with Optimal Transport

Experiments

l
A

GRa ) * ’ » * (]
'+, S

) FEBZLAKRE
%>/ University of Science and Technology of China

|

(Zhao et al., 2018)

|

(Sengupta et al., 2020)

Ours

??

Yu et al. RFPose-OT. FITEE 2023.
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Pose Estimation with Optimal Transport

Experiments

University of Science and Technology of China

Envs Methods

Nose Neck Shoulders Elbows Wrists Hips Knees Ankles Overall

RF-Pose3D ( ) 8.11 5.21 7.57 992 15.74 6.64 11.31 21.10 11.27
(a) mm-Pose ( ) 8.19 5.30 7.23 9.67 15.29 6.20 10.83 19.04 10.72
RFPose-OT 7.90 6.14 6.76 7.99 11.67 6.39 8.34 12.60 8.68
RF-Pose3D ( : ) 6.53 4.86 6.65 8.75 14.05 6.95 11.26 21.52 10.70
(b) mm-Pose ( ) 6.64 3.88 6.34 9.16 14.834 6.98 11.28 19.28 10.45
RFPose-OT 7.85 6.42 6.78 7.90 11.41 6.82 9.35 14.05 9.07

Quantitative comparison experiment (keypoint estimation error):
(a) basic scene & (b) occluded scene, Unit: cm

Yu et al. RFPose-OT. FITEE 2023.
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Pose Estimation with Optimal Transport
Ablation Study

Envs Models Nose Neck Shoulders Elbows Wrists Hips Knees Ankles Overall
RFPose 8.69 6.82 7.58 897 1293 7.19 931 14.11  9.69
(a) RFPose-L2 8.02 5.93 6.88 8.12 12.02 6.36 857 1296 8.84
a |
RFPose-OT w/o Lpo+ro 8.32 6.04 7.01 8.52 12.66 6.30 8.57 13.94 9.17
RFPose-OT (full) 7.90 6.14 6.76 7.99 11.67 6.39 8.34 12.60 8.68
RFPose 7.87 6.64 7.35 8.69 12.10 7.57 10.11 15.27  9.76
(b) RFPose-L2 7.88 6.59 7.23 8.62 1247 7.33 10.08 1520 9.74
RFPose-OT w/o Lporro 7.83 6.11 7.01 836 12.04 6.61 9.51 1555  9.44
RFPose-OT (full) 7.85 6.42 6.78 7.90 11.41 6.82 9.35 14.05 9.07

Ablation experiment (keypoint estimation error):
(a) basic scene & (b) occluded scene, Unit: cm

Yu et al. RFPose-OT. FITEE 2023.
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Pose Estimation with Optimal Transport

Unseen Scenario

Outdoor

RFPose-OT

Trajectory Tracking

7

= Ground Truth
= RFP0Ose-OT

= Ground Truth
= RFPoOse-OT

| == Ground Truth
= RFPoOse-OT

Y(m)

= N w B~ w (o)]
Y(m)

A . B
Y(m)

= N w EY w (o)) ~

3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7

Yu et al. RFPose-OT. FITEE 2023.
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Pose Estimation with Optimal Transport

Summary

1. Optimal transport theory to align RF and pose domains, ensuring accurate
feature matching.

2. Demonstrated strong generalization across diverse scenarios:
* Indoor basic and occlusion scenes
« Qutdoor environments

Outcome: Achieved accurate and versatile human pose
estimation across challenging settings.

Yu et al. RFPose-OT. FITEE 2023.
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RF-Based Human Pose Estimation
with Spatio-Temporal Attention



Single-Person Pose Estimation

Challenges

1. Sparse and Incomplete RF Signals: RF signals are often sparse and
incomplete.

2. Feature Fusion Across Dimensions: RF signals from horizontal and
vertical planes have distinct characteristics.

Y
0 Q —_— .Vertical RF signal
S q jg 0 z
ﬁ X i X
R — ! Horizontal RF signal

0O 7 O Z
Xie et al. TMM 2023 & TCSVT 2023
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Single-Person Pose Estimation
RPM Framework

———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

Feature Fusion Network i l Spatial-Temporal Attention Network
Joint Queries
Horizontal : :i ' : ( \ B
RF signals i ¥ Spatial Attention Module ]—» «— —»I A
Channel Multi-scale L Spatial Attention Module ]—» 3\ [ —{ Temporal | x
@ —> Fusion Fusion % . O . Attention ,
Block Block =) ' S\ "y
S —»[ Spatial Attention Module ]—»f& [ Module + . t
—_ ;
Spatial
Vertical 55T TS LI I I LI I I IIII I
RF signals | @ Concatenate [] Spatial Feature [] Spatial Position Embedding [ Temporal Feature  [] Temporal Position Embedding Mask

« Feature Fusion Network (FFN): Combines horizontal and vertical RF features.
« Spatial-Temporal Attention Network (STAN):
« Spatial Attention Module (SAM): Recovers missing body parts.

« Temporal Attention Module (TAM). Refines 3D skeleton sequences
Xie et al. TMM 2023 & TCSVT 2023



Single-Person Pose Estimation
Feature Fusion Network: Combines horizontal and vertical RF features

Multi-scale Fusion Block

>\
s
V1R

~
<
\

'Y
<4
\

/
/I \

|y | x|y
AN\ Ds ¥ ||«
-~
PESH UONEOIHISSE[D

>

o Channel Fusion Block: Group convolution, bottleneck blocks.

o Multi-Scale Fusion Block: Deformable convolutions, scale/shape adaptation.

o Lightweight MLP: 2048-dimensional feature vector.
Xie et al. TMM 2023 & TCSVT 2023



Single-Person Pose Estimation

Spatial Attention Module: Recovers missing body parts

Feature Embedding

0000
1. Masked Joint Modeling (MJM): Simulates missing 6}9
body parts by masking random joint queries,
encouraging the model to infer missing information. T
Multi-head Attention
Encoder
2. Multi-Head Self-Attention: Captures non-local joint N7
relationships by modeling dependencies across all joints. 1
Multi-head Attention
Encoder
[mask] |

Joint Queries

Xie et al. TMM 2023 & TCSVT 2023



Single-Person Pose Estimation

Temporal Attention Module (TAM): Refines 3D skeleton sequences

1. Masked Frame Modeling (MFM): Masks input | X, 1
queries from random frames to simulate missing P
temporal information. T

Multi-head Attention
Encoder

2. Multi-Head Self-Attention: Captures temporal =
dependencies across frames.

f

Multi-head Attention
Encoder

[mask]I

Frame Queries

Xie et al. TMM 2023 & TCSVT 2023



Single-Person Pose Estimation

Loss Function

 |Location Loss
1

F
Lioe 2} HP}’ . Pf%

sequence body center  body center label
length prediction

« Pose Loss

1

Cpose — E]Z Z H(I)fr o P;”OOT) o (]A)f o ]A)?OOT) 2
i=1 k=1 / \
3D pose 3D pose label
e Overall Loss prediction

L= »Cloc - [:pose

Xie et al. TMM 2023 & TCSVT 2023
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Single-Person Pose Estimation

« Comparison Test

Quantitative comparison experiments of different methods (unit: mm)

Method  Params (M) MACs (G) Nose Neck Sho Elb Wri Hip Knee Ank MPJPE (])

RFPose3D 193] 10.92 2533 814 52.0 90.1 120.4135.1 899 14491674 1163
mm-Pose 1971 33,08 025 165.8 67.3 203.3233.8261.6138.6162.31699 183.7

RPM 81.67 1375  §7.5 37.2 49.1 64.9 68.2 46.5 358.1 65.1 S7.1

MPJPE: measures the Euclidean distances between the ground truth joints and the predicted joints
Params: measures the number of all trainable parameters in the model
MACs: measures the amount of all multiply-accumulate operations in the model

RPM leads baseline methods significantly in pose estimation accuracy
Xie et al. TMM 2023 & TCSVT 2023



Single-Person Pose Estimation
« Ablation Study

Ablation experiments for Feature Fusion Network ( unit: mm)

Backbone Multi-scale Modeling Deformable Conv MPJPE ()

- - 63.2
FFN v - 57.6
v v 57.1

Ablation experiments of Spatio-Temporal Attention Network ( unit: mm)

Method SAM TAM MPIJPE (|)
- - 99.2
RPM v - 75.5
v v 57.1

Xie et al. TMM 2023 & TCSVT 2023
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Single-Person Pose Estimation

 Visualization Results in Basic Scenarios

- P
~ U

low illumination

Xie et al. TMM 2023 & TCSVT 2023
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Single-Person Pose Estimation

 Visualization Results in New Scenario

RGB

Comparison of pose estimation performance under new scenarios (unit: mm)

Label

RPM

RFPose3D

mm-Pose

Method Mean ({)
RFPose3D [103] 146.5
mm-Pose [197] 205.2
RPM 78.5

Xie et al. TMM 2023 & TCSVT 2023



Single-Person Pose Estimation

- Spatial Attention Visualization

| -

RPM can adaptively adjust the spatial attention of keypoints



Single-Person Pose Estimation

 Temporal Attention Visualization

RPM can refine human pose sequences based on temporal attention



@M EAELEE:

< University of Science and Technology of China

Single-Person Pose Estimation

* Indoor Localization
Indoor localization performance comparison (unit: cm)

Method X Y Z Mean ({)
RFPose3D!I1%l 26 28 1.6 5.0
mm-Pose [107] 38 34 19 6.3
RPM 23 18 1.1 3.6

Visualization of indoor localization trajectories

— B -1 RFPose3D -1 —— mm-Pose

RPM also performs well on indoor human localization tasks



Single-Person Pose Estimation

« Attention mechanism for robust pose estimation.
* Multi-scale feature fusion using channel attention and
deformable convolution.

* Fine-grained human perception in regular, occluded, and dark
scenes.

 Accurate indoor human localization.

Xie et al. TMM 2023 & TCSVT 2023



Multiple-Person Pose Estimation

 RPM2.0 Framework

Feature Extraction

|
: Network
. |
Horlgontal A — —_—
View —+ | 5 _
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University of Science and Technology of China

i, i
? ’
é é :&‘.
\
1 Spati.al r t
Attention
Module N
. “}
i :

« Feature Extraction Network: extracts features of multi-person separately
« Multi-view Fusion Network: mapping multiple radar views to a uniform space
« Spatio-temporal Attention Network: modeling the correlation of multi-person

o+—:"

Xie et al. TMM 2023 & TCSVT 2023



Multiple-Person Pose Estimation

Feature Extraction Network: extracts features of multi-person separately

——————————————————————————————————————————————————————————————————————————————————————————

Backbone ¥ Detection Branch
i ¥ . Center heatmap
1 T '
| D .
1 QD 1
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RF | LN S—
Signals 5 t(% ii |
: Q ! — Box size
1 m :I
| =
| o !
1 3 1
— Keypoint feature

1. HRNet-18 Backbone: Ensures robust multi-scale feature extraction for small-scale targets.
2. Anchor-Free Detection: Simplifies person detection using center points and offsets.

3. Heatmaps: Generates center and keypoint heatmaps for precise 3D pose estimation.

Xie et al. TMM 2023 & TCSVT 2023



Multiple-Person Pose Estimation

Multi-view Fusion Network: mapping multiple views to a uniform space

« Cropped Feature Extraction: bounding boxes are used
to crop regions of interest to enhance each view

« Canonical 3D Space: The horizontal and vertical
features (2D) are projected into a shared canonical

space

 Fusion of Horizontal and Vertical
Features

J Xie et al. TMM 2023 & TCSVT 2023
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Multiple-Person Pose Estimation

Spatio-temporal Attention Network: modeling the correlation of multi-person

|
. . . ! . .
Spatial Attention Module Temporal Attention Module | Multi-head Attention Encoder
|
: Lx ¢
- T T ~ T T T ~ |
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|
|
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Xie et al. TMM 2023 & TCSVT 2023
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Multiple-Person Pose Estimation

« Comparison Test

Comparison of single-person pose estimation performance by different methods (unit: mm)

Method Nose Neck Sho Elb Wri Hip Knee Ank Mean ({)

Single-Person

RFPose3D 1] 1005 73.7 1172 149.7 1594 107.6 149.5 168.0 134.1
RFPose-OT 1?1 869 69.8 84.7 108.5 111.0 84.6 1104 1224 100.0
RPM 1381 577 490 524 64.6 658 515 605 658 592

RPM2.0 (concat) 55.8 37.0 505 69.1 718 474 60.0 66.1 58.4
RPM?2.0 (sum) 56.1 379 526 703 745 484 599 672 59.8
RPM2.0 (softsum) 554 37.0 498 672 694 47.1 583 64.8 S37.3

better results than previous methods on single-person pose estimation task



Multiple-Person Pose Estimation

« Comparison Test

Comparison of the performance of different methods for multi-person pose estimation (unit: mm)

Method Nose Neck Sho Elb Wri Hip Knee Ank Mean ()

Multi-Person

RFPose3D %] 114.0 84.3 133.0 162.7 175.5 117.7 155.7 1725 1452

RPM2.0 (concat) 71.9 533 6354 83.7 863 620 740 &1.6 74.6
RPM2.0 (sum) 73.1 533 69.6 885 90.5 63.8 76.6 &34 76.5
RPM2.0 (softsum) 69.2 503 657 848 857 61.0 73.5 80.4 73.0

RPM2.0 achieves substantial performance gains over the baseline methods for



Multiple-Person Pose Estimation

« Comparison Test

Comparison of Model Size and Computational Complexity

Method Params (M) MACGCs (G) Inference Speed (ms)
RFPose-OT [15] 7.02 1.30 29
RFPose3D [103] 10.92 25.33 32
RPM [138] 81.67 1375 49
RPM2.0 38.41 184.93 43

Performance comparison of different detectors

Detector Detection Speed (ms) AP  MPJPE (mm)
RPN [160] 3.2 0.72 74.6
DETR 161 (2 stage) 15.6 0.76 75.2
Anchor-free detector (ours) 0.4 0.75 73.0

) ¢aMzLLEXS

University of Science and Technology of China

RPM 2.0 is simpler and more efficient
than previous RPM

Anchor-free detector achieves a
balance of speed and accuracy

Xie et al. TMM 2023 & TCSVT 2023
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Multiple-Person Pose Estimation
« Ablation Study

Ablation experiments for RPM2.0 (unit: mm) Analysis on different signal input ( unit: mm)
Backbone MFN SAM TAM MPJPE (]) Method Horizontal RF signal Vertical RF signal MPJPE ()
v - 103.2
) ) 174.1 RPM2.0 . v 132.4
v - 127.5 / P 3.0
- v 120.2
R Net - v v 95.7
v - - 155.0 | |
v v _ 102 .4 BPMZ.O can .fuIIy fuse RF signals from multiple
v ) % 93 6 views for optimal performance
v v v 73.0

Xie et al. TMM 2023 & TCSVT 2023
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Multiple-Person Pose Estimation

 Visualization Results in Basic Scenarios
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Multiple-Person Pose Estimation

 Visualization Results in New Scenarios

uuuuu

gl Ly

Comparison of pose estimation performance in new scenarios ( unit: mm)

Method Mean (|)
RFPose3D [50] 253.4
RPM 2.0 116.2

RPM 2.0 can accurately recover multi-person poses on new data
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Multiple-Person Pose Estimation

Summary

1. Lightweight Anchor-Free Detector: It efficiently identifies multiple
targets with reduced computational complexity.

2. Multi-View Feature Fusion Network: This network integrates radar
views based on spatial relationships, ensuring robust and unified 3D

pose representation.

Xie et al. TMM 2023 & TCSVT 2023
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Lightweight RF-Based Human Pose
Estimation for Mobile Devices



Lightweight Pose Estimation for Mobile Devices

(T2v)= )

RF Camera RF Heatmap 3D Human
Pose

* Problem

 How to estimate human poses using RF signals in real time?

- Large amount of input signal data
- Heavyweight model

Yu et al. MobiRFPose TMM, 2024.



Lightweight Pose Estimation for Mobile Devices

« Solution

b e

Absolute Pose Location Relative Pose

P, = HLN(S) p, = PEN(S)
2§
ﬁ :IA’O +ﬁp

Yu et al. MobiRFPose TMM, 2024.
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Lightweight Pose Estimation for Mobile Devices
 MobiRFPose

Location Map

N .
Horizontal Antenna Array I =
| Human Localization | 5 > .
| | | Network (HLN) .H ] * —
*Preprooess ]
: Human Locations in Absolute Human Poses in
Physical Space Physical Space
A

RF Heatmap

Pose Estimation
Network (PEN)

Human Locations in Cropped
RF Heatmap RF Heatmaps Relative
Human Poses

Yu et al. MobiRFPose TMM, 2024.
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Lightweight Pose Estimation for Mobile Devices

 Human Localization: Each cell produces (c, dx, dy)

Location Map M = E1(S). When ¢ > 4, human object exists Human Location in the Location Map

r; = .+ dx
Y = Y.+ dy

(Te, Ye)

dz

dy[

=
r. + dx,

e + dy)

dz

Human Location in the RF Heatmap
pr = (&r,9r) = a(z1,31)
Human Location in the Physical Space
Po = (Z0,90,0) = B(z1,y1,0)

Loss Function

Ly = |M — M||;
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Lightweight Pose Estimation for Mobile Devices

Human Pose Estimation CONV
1. Given cropped pose feature Map >.
~ Value Maps
va — EP(S) CONV

Pose Feature Maps broadcaste

2. Use attention to refine the feature map
Jv = CONV;, (fg)an:CONV2 (fg), @
Learnable Vector
fé = fy © BV softmax (wiT)]

Query Maps

Selection Map

Pose Feature Selection (PFS)

3. Pose Keyoints Prediction Loss Function

Py = F(fs) Lren = ||Pp — Pyl
Yu et al. MobiRFPose TMM, 2024.
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Lightweight Pose Estimation for Mobile Devices

 EXxperiments

Table 1. Quantitative evaluation results of different methods.

RE-HPED-A RF-HPED-B

MEHeds HDA (%) T MPIPE (cm) | | HDA (%) T MPJPE (cm) | | L 2ams M) L MACs (G)
RF-Pose3D [16] | 97.76 13.68 04.32 14.04 0.492 25.33
mm-Pose [23] 100.0 10.26 - - 33.08 0.246
Fast REPose 08.54 11.05 96.13 11.29 0.813 0.170

RF-HPED-A: Single Person
RF-HPED-B: Multiple Persons
HDA: Human Detection Accuracy
MACs: Multiply-Accumulate Operations

Yu et al. MobiRFPose TMM, 2024.



Lightweight Pose Estimation for Mobile Devices

- Experiments
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Lightweight Pose Estimation for Mobile Devices

e Qutdoor

Fast RFPose

Outdoor3

Fast RFPose

A a k {



Lightweight Pose Estimation for Mobile Devices

Deployment on Mobile Devices

OpenVINO (
N l Xml
Trained >
Fast RFPose N ONNX IR
\ / \ / .bin
GPU —» CPU - /

CPU: 1 processor with 1.6 GHz and 2 cores
Speed: 66 FPS

Yu et al. MobiRFPose TMM, 2024.
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Lightweight Pose Estimation for Mobile Devices

100

Detection Grid

RF Heatmap

(@b x7 (b)10 x 13 (c) 20 x 25

Sparse detection grid: HDA 1 Localization error 1
Dense detection grid: HDA | Localization error | -

HDA: Human Detection Accuracy

ocalization error (cm)

98 1

97. 53

w H> (@] » ~ co ©

(a) (b) (c)
Yu et al. MobiRFPose TMM, 2024.



Lightweight Pose Estimation for Mobile Devices

e Detection Threshold

100. 0

97. 51
95. 0+
92. 51

HDA (%)

87.51
85. 01
82. 51

80.0

Small thresholds: Over-detection, Large thresholds: Miss-detection
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88. 96
,49

/
/
/
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96. 1395. 96
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Yu et al. MobiRFPose TMM, 2024.



Lightweight Pose Estimation for Mobile Devices

« Effect of the PFS Module

0.088- —— Fast RFPose w/ PFS
—— Fast RFPose w/o PFS
0.085 1
»n 0.082 -
%]
o
-
0.079- ~
0.076 1
0.073 — . - . . :
0 20 40 60 80 100
Epoch

The PFS module can prevent the model from overfitting, and 1t 1s
extremely lightweight, with Params at 0.008M and MACs at 0.0005G

Yu et al. MobiRFPose TMM, 2024.
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Lightweight Pose Estimation for Mobile Devices

» Lightweight RF-based human pose estimation model
- Transmitting and receiving signals using only horizontal antenna arrays
- Model structure from whole to local

* Design Pose Feature Selection (PFS) to efficiently extract human posture

information
- Prevent the model from overfitting with very few parameters and computations

« Mobile deployment validates the lightweight and real-time characteristics
- Runs at 66FPS

Yu et al. MobiRFPose TMM, 2024.



RF-Based Human Pose Silhouette
Segmentation



RF-Based Human Pose Silhouette Segmentation%'

* Problem

How to achieve more flne -grained RF-based human posture sensing?

Extracting fine-grained information for body contouring
Wu et al. RFMask TMM 2022
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RF-Based Human Pose Silhouette Segmentation

 RFMask System Overview

Semantic Segmentation -

_____________________________

n
9
»

RolAlign

Vertical BBox

2G| —

I
Human Detection : 1 Mask Generation

___________________________________________________

- Signal Processing Module: Generate horizontal and vertical heatmaps from raw wireless signals.
 Human Detection Module: Detect the target’s 3D position using horizontal signals and geometric
relationships with vertical signals.

« Mask Generation Module: Extract Rol features, decode the semantic segmentation map, and
merge it with the original image for a complete segmentation result.
J J J PIete 569 Wu et al. RFMask TMM 2022
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RF-Based Human Pose Silhouette Segmentation

Human Detection: locate and identify human targets in 3D space

]

[
S PR—
A /
Encoder |—»|8 8 |— —> -
1
2 4
-
BBoxhor
Horizontal Heatmap (>§ [
Sm o
Som i
: —
o8 )
® = o
©F
>
Encoder —) —> —_— “
BBoOX,er )

Vertical Heatmap

« Bounding-box regression module: Predicts target positions and bounding boxes.
* Feature cropping module: Extracts horizontal and vertical features based on target positions.

« 3D bounding box composition module: Merges horizontal and vertical boxes into a 3D bounding

box using geometric relationships.
Wu et al. RFMask TMM 2022
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RF-Based Human Pose Silhouette Segmentation

 Mask Generation Module: generate a semantic segmentation map

_— o S S S S S B e e e e DS e B DS B B B e B Eae e Eaw e

|
! |
Y e .

T =
£ 5 :
... E = | —|Decode :
CED r I
! = :
G |
Y " I I
! |
) PG ; Reprojectio !
P(%p ) | == i I
i/ : n :
ﬁ/x ___________________________ Y

0 : z BBox3D

* Multi-Head Fusion Module: The multi-head fusion module utilizes attention mechanisms to combine spatial
information with features.

 Decoder Module: The decoder module decodes the fused features to generate human contour information.

* Reprojection Module: The reprojection module projects the 3D bounding boxes onto the imaging plane,
complementing the missing position information in the Rol features, and generating a complete contour
segmentation map.
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RF-Based Human Pose Silhouette Segmentation

« Loss Function
e Human detection loss

Ld( t((t(p P , U, tu> — Lc:l.s (pap“)‘|‘ )\del, [’lL Z 1]Lbo.’1:(tua 'U)a

* Silhouette prediction loss
1 *
L'mask — N E er < My ke Mg ),
L Vbox i—1

e Total loss

L = Ldetect + Lmask'-
Where L, and L, represent binary cross-entropy loss, and Ly, 1s the smooth L loss.

Wu et al. RFMask TMM 2022



RF-Based Human Pose Silhouette Segmentation

« Comparative Experiments

TABLE 1|
COMPARISONS WITH RFPOSE

Model Single-Person Multi-Person Action
RFPose(4) 0.664 0.626 0.616
RFPose(12) 0.675 0.631 0.614
RFPose(32) 0.661 0.617 0.598
RFPose(64) 0.641 0.589 0.604
RFMask(4) 0.681 0.682 0.681
RFMask(12) 0.706 0.711 0.705

Mask loU: Measures the similarity between predicted and ground truth segmentation by calculating
the ratio of their intersection to their union.

*@i’éé-&f# §

and Technology o fCh

The proposed method significantly outperforms the baseline methods in the silhouette generation task
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RF-Based Human Pose Silhouette Segmentation

« Comparison Experiment: Impact of Sequence Length and Backbone Network
Architecture on Detection Performance.

TABLE 11
LOCATION ACCURACY

Model Backbone APs50.95 APs9g AP75 Recall
RFMask(4) ResNet-18 0.586 0966 0.678 0.662
RFMask(4) ResNet-34 0.590 0966 0.689 0.665
RFMask(4) ResNet-50 0.581 0.966 0.671 0.656

RFMask(12) ResNet-18 0.621 0.967 0.783  0.691
RFMask(12) ResNet-34 0.631 0.967 0.817 0.699
RFMask(12) ResNet-50 0.632 0.967 0.824 0.701

AP (Average Precision): Precision represents the proportion of correctly detected targets among the detected targets, while Recall
represents the proportion of correctly detected targets among all the actual targets. AP value represents the average area under the
Precision-Recall curve.

The proposed method performs well across different sequence lengths and when using

different backbone networks.
Wu et al. RFMask TMM 2022
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RF-Based Human Pose Silhouette Segmentation
* Ablation Study:

TABLE III
ABLATION STUDY

H H&V H&V

Dual-Branch v v

Multi-Head Fusion v
Single-Person(4) 0.634 0.644 0.681
Multi-Person(4) 0.587 0.604 0.682
Action(4) 0.582 0.585 0.681
Single-Person(12) 0.655 0.670 0.706
Multi-Person(12) 0.638 0.642 0.711
Action(12) 0.603 0.603 0.705

Each module and its structure in the proposed method make significant contributions to the
final performance.

Wu et al. RFMask TMM 2022
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RF-Based Human Pose Silhouette Segmentation

« Visualization Results: (Typical Scenarios)

RFMask RFPose2D RFMask RFPose2D

The proposed method can effectively accomplish the contour generation task in typical scenarios.

Wu et al. RFMask TMM 2022
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RF-Based Human Pose Silhouette Segmentation

« Visual results display: (Special scenarios)

RFMask RFPose2D RFMask RFPose2D

The proposed method performs consistently well in special scenarios without significant

performance degradation.
Wu et al. RFMask TMM 2022



RF-Based Human Pose Silhouette Segmentation“

- Human silhouette extraction system from RF signals.

- Lightweight two-stage generation model.

» Spatial feature fusion based on geometric relationships.

- Handles single/multiple individuals, low-light, occluded, and dark environments.

Wu et al. RFMask TMM 2022



Multimodal-Based Human Pose
Visualization
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Multimodal-Based Human Pose Visualization

Problem: RF-signal control Image to Video Synthesis

RFGAN

I, = G(Iy, XRF)

Source Frame

Corre_spadﬁg
RF Signals

RF Hor RF Ver

Cha"enges: Ground-truth Frames

« Unsupervised RF Feature Extraction
* Fusion of Horizontal and Vertical RF Heatmaps
* Injecting RF Features into GAN Yu et al. REGAN TMM 2023
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Multimodal-Based Human Pose Visualization

R FG AN o Hor Ver Hor Ver
. Heatmaps
1. RF-Extractor with RNN:
- Two encoders for horizontal and vertical RF heatmaps. RE-Extractor RE-Extractor

* RNN capture temporal dependencies in human motion

- Feature maps are fused using RF-Fusion (5_
= il

2. RF-Based Generator

SoAu'rce Frame y y
« (Generate image given source image and features Generator l (Generator "= | Generator

The first work to generate
human images from the
mmWave radar signals koes

[ <_Adversarlal Tralnlng 2
G

Yu et al. RFGAN TMM 2023
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Multimodal-Based Human Pose Visualization
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Multimodal-Based Human Pose Visualization

* Generator: generate new image with given RF signal and

SoOurce image RF Fused Representation
(Adjusted)

/

4 x ResBlocks j#—

Encoder
Y

4 x ResBIocks]d—ﬂi

4 x ResBlocks je—

¢

\

Source Image

RF-InNorm(fx, ;) = F,, ;(h) -

Yu et al. RFGAN TMM 2023



Multimodal-Based Human Pose Visualization
Discriminative Part
Eiera i % 1. Whether the image matches

-——— = -

)
: the pose?
|
|

i
I
I
|
|
|

' D1(image, RF-features)

RFIFused
Eprebentaﬁon
|
3 Activity- i Eaef;
Discriminator I
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D2(image, source)
Yu et al. RFGAN TMM 2023



Multimodal-Based Human Pose Visualization

Loss Functions
Activity-Discriminator
LPoS = [P 4+ JLPoS
L1550 =B | Dpos (X Eais (1, 8,)) — 1113
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Yu et al. RFGAN TMM 2023
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Multimodal-Based Human Pose Visualization

* Quantitative comparison experiments

Walk
Methods FID| SSIMt  MSE| | FID(Crop)|  SSIM (Crop)t  MSE (Crop) | | AKD |
Img&RF 27.84 0.9622 14.923 142.77 0.6199 63.41 9.041
RF-Concat 21.08 0.9689 7.144 106.85 0.6548 54.67 7.947
RFGAN 15.75 0.9695 6.691 78.68 0.6611 53.05 5.539
Activity
Methods FID| SSIMt  MSE| | FID(Crop)]  SSIM(Crop)t  MSE(Crop)| | AKD |
Img&RF 22.03 0.9643 12.862 133.20 0.6034 64.91 12212
RF-Concat 19.19 0.9707 6.644 101.36 0.6501 55.49 8.996
RFGAN 15.05 0.9708 6.572 76.16 0.6548 52.96 7.163

Yu et al. RFGAN TMM 2023
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Multimodal-Based Human Pose Visualization

. Qualitative comparison experiments




Multimodal-Based Human Pose Visualization

* Quantitative ablation experiments

) ¥EAZLLX

University of Science and Technology ofChma

Walk
Methods FID,  SSIMt  MSE| | FID(Crop)l  SSIM(Crop)t  MSE (Crop)| | AKD]
Img&RF 27.84 0.9622 14.923 142.77 0.6199 63.41 9.041
RF-Concat 21.08 0.9689 7.144 106.85 0.6548 54.67 7.947
RFGAN 15.75 0.9695 6.691 78.68 0.6611 53.05 5.539
Activity
Methods FID|  SSIMt  MSE| | FID(Crop)]  SSIM(Crop)t  MSE (Crop)| | AKD |
Img&RF 22.03 0.9643 12.862 133.20 0.6034 64.91 12.212
RF-Concat 19.19 0.9707 6.644 101.36 0.6501 55.49 8.996
RFGAN 15.05 0.9708 6.572 76.16 0.6548 52.96 7.163

Yu et al. RFGAN TMM 2023
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Multimodal-Based Human Pose Visualization

* Qualitative ablation experiments

Hor Ver
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Multimodal-Based Human Pose Visualization

e New Environments

* Quantitative

Methods FID | SSIM 1 MSE | FID (Crop) | SSIM (Crop) 1 MSE (Crop) | AKD |
New Env | 20.64 0.9739 5.735 184.98 0.6671 57.31 7.002
New Env 2 32.35 0.9192 25.76 122.40 0.5598 63.09 5.487

e Qualitative

..""ao.
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Multimodal-Based Human Pose Visualization

* Occlusions and Bad Lighting

e When environmental conditions are good ™ Source image

If‘> All-Weather
* When environmental conditions deterioratec mp RF signals

Bad Lighting

Yu et al. RFGAN TMM 2023
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Multimodal-Based Human Pose Visualization

Summary

« Multimodal Fusion for Human Pose Generation:

Combines RF signals and visual information, using adversarial learning and feature
correlation matching to extract and fuse pose features seamlessly.

* Robust Performance in Diverse Conditions:

Achieves high-quality human pose generation with strong robustness in challenging
scenarios, including dark, occluded, and unfamiliar environments.

Yu et al. RFGAN TMM 2023
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RF-Based ECG Monitoring
Background

Cardiovascular disease (CVD) imposes a substantial burden on healthcare systems

Global Impact:

« CVD is a leading cause of death worldwide.

* Annual global deaths: 19 million.

Regional Impact:

* |n China, CVD accounts for half of all deaths.

* In LMICs, 75% of global CVD deaths occur.

Economic Burden:

« Annual healthcare costs: $393 billion.

 Early medication use reduces individual CVD costs by 51%.

Good news: 80% of cardiovascular disease is preventable



RF-Based ECG Monitoring

Value of Electrocardiogram (ECGQG)

ECG shows significant prognosis value and diagnosis value in potential.

1. The gold standard for diagnosing various cardiac conditions.
« Detects arrhythmias (e.g., atrial fibrillation).

- Identifies myocardial infarctions (e.g., ST-segment changes). e 74 -

«  Monitors bradycardia and heart block. ' R
2. A critical tool for postoperative monitoring

« Holter, External Loop, and Event Recorder T Y YU

3. Significant prognostic value
 HRV (beat-by-beat) shows significant prognostic value for cardiac events (HR = 1.47).

« Baseline abnormalities link to overall mortality, CVD admissions, and major new
abnormalities.



RF-Based ECG Monitoring

Dilemmas in Current ECG Workflow

1. Economic burden
« The median cost of a routine ECG is $125 in the U.S.
* In LMICs, ECG machines are often unaffordable for rural populations
2. Long-term monitoring is inconvenient
* |t relies on proper user operation
« Wearable or adhesive-based devices can cause discomfort
3. Prognostic and screening value remains underutilized
* Routine ECG struggles to capture intermittent or transient cardiac events
« Implantable Cardiac Monitors (ICMs) are invasive and expensive

Our answer is a cost-effective, contactless, continuous cardiac monitoring
device that is connected-care enabled and convenient for users.



RF-Based ECG Monitoring

Connected-care Cardiac Sensing System

Our goal is to achieve daily diagnosis and prevention, discover effective novel
biomarkers for prognosis, and ultimately promote health equity.

« Cost-effective: Affordable and accessible for the majority.

» Contactless: Designed for ease of use without physical contact

« Continuous: Enables reliable, long-term monitoring

» Convenient: Easy to use and designed to fit effortlessly into daily life.

Our current efforts

« Device: Compact and efficient cardiac monitoring solution.

* Feasibility: Fine-grained cardiac imaging.

* Preliminary: Single-lead ECG monitoring to establish benchmarks.
 Clinical validation: Testing in real-world healthcare settings



RF-Based ECG Monitoring Device

Single Chirp Configuration
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RF-Based Physiological Imaging

Problem: previous work usually estimates the 1d vital signal
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Question: can we image the detailed body surface motion with RF signals
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If true, we can analyze finer details to infer cardiac states
Chen et al. MMCamera. In MobiCom (Poster) 2022.
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RF-Based Physiological Imaging

MMCamera Prototype Design
For concept validation purposes

Massive MIMO radio system

* 1.4Ghz bandwidth from 2.7 to 4.1Ghz

« 12 x 12 virtual planar array

« Aperture sizes: 75.72cm (h), 52.8cm (w)

Chen et al. MMCamera. In MobiCom (Poster) 2022.
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RF-Based Physiological Imaging

MMCamera Prototype Design

1. Back Projection: Reconstruct 3D voxel reflections using back projection

2. Multipath Elimination: 1D CFAR to detect direct reflections

3. Surface Projection: Project the closest reflections onto the imaging plane.

4. Noise Filtering: Use median filtering to smooth out noise and ensure continuity.
5. Motion Imaging: Extract phase variance to generate dynamic imaging.

Align W|th ECG
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RF-Based Physiological Imaging

Conclusion

RF signals can capture the detailed movements associated with cardiac activity.

Questions

Is it possible to recover the ECG from surface motion?
How can ECG be monitored with an off-the-shelf radar chip?

The data-driven approach using deep learning to
address the limitations of radar performance

Chen et al. MMCamera. In MobiCom (Poster) 2022.



RF-Based Electrocardiogram Monitoring

Problem

e A
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Tl evaluation board (same chip)

Can we monitor Electrocardiogram (ECG) with RF signal?
* Related works: breath and heartbeat (Adib et al. 2015), RR interval (Dong et al. 2020)

« Fundamental: Mechano-electrical Coupling (Bers 2002)

Chen et al. TMC 2022.



RF-Based Electrocardiogram Monitoring

Signal selection
Learning directly from raw data often fails to produce satisfactory results, even
with larger datasets.
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Chen et al. TMC 2022.
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RF-Based Electrocardiogram Monitoring

Signal Pre-processing

1. Beamforming: reflections 2. Micro-motion Amplification

coming from different are RF signals are dominated by breathing
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RF-Based Electrocardiogram Monitoring

Cardiac Signals Focusing

-2 1.4 1.6 1.8
Time (seconds)

Motivation:
3D beamforming is redundant

Focus on the signals with cardiac cycle

DTW thresholding

Z DTW( SZ) > Threshold

Chen et al. TMC 2022.



RF-Based Electrocardiogram Monitoring

OMMEEE LY
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Spatial Filtering for Cardiac Signals
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Motivation:
Cardiac signals are spread over the body surface

Similar motion trends with spatially nearby signals

K-means clustering
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Chen et al. TMC 2022.



Q) ¢aA2LLXS

University of Science and Technology of China

RF-Based Electrocardiogram Monitoring

Overall Framework

1. Signal selection
2. Spatio-temporal features
3. Autoregressive ECG restruction

N signal clusters Spatio-temporal Encoder Autoregressive
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Hidden Temporal Feature
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Chen et al. TMC 2022.



RF-Based Electrocardiogram Monitoring

ECG Reconstruction
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Accurate ECG reconstruction even in irregular case.

Chen et al. TMC 2022.



RF-Based Electrocardiogram Monitoring

Quantitative Results

Media: 14ms (Q), 3ms (R), 8ms (S), 10ms (T)
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RF-Based Electrocardiogram Monitoring

Daily life usage
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1. Environment robustness
2. Performance drop 10% at 2m

Chen et al. TMC 2022.
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RF-Based Electrocardiogram Monitoring

Conclusion

First RF-based system for contactless ECG monitoring
* High-accuracy cardiac mechanical activity sensing.

» Expands radar sensing capabilities.

Further Challenge

Not validated on a large scale or in a clinical environment.

Chen et al. TMC 2022.
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Long-term Cardiac Activity Monitoring
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Clinical scenario Daily life scenario

Goal: Long-term and continuous monitoring of cardiac activities
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Long-term Cardiac Activity Monitoring

Real-time IBls

Proposed System Monioring
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Long-term Cardiac Activity Monitoring

Heartbeat on Different conditions

Breath Holding

Normal Breath

Amplitude Q)

N
o
o

(o)
o

o

(o]

Amplitude

1000

500

0

¥EBZELXG

University of Science and Technology of China

0 2

10

— 5
I g
jRespiratory spectra ] TD’
Ileakage 9
I £ 0.
b o

|— Respiration and Heartbeatsl

' ! ! ! ! - - s ! T T T T
I ] B 05F IBI errors: 2.3ms Heartbeats |-
Heartbeat frequency = Ground Truth |
- - g 0 WA W wrg
©
N o o 3 i -0.5 1 ‘ ] )
4 6 8 10 12 14 16 18 0 2 4 6 8
Frequency (Hz) d Time (s)
T T 1 1
0.5r IBI errors: 75.6ms —Heartbeats |

Ground Truth

Aol

0 2

4 6 8 10 1)2 1.4 1‘6 18 0 2 4 6
Frequency (Hz) Time (s)
Frequency Phase

10

Zhang et al. Nature Communications 2024



) ¥RAZLEXE

< University of Science and Technology of China

RF-Based Cardiac Activity Monitoring

Periodic Signal
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RF-Based Cardiac Activity Monitoring

 Method
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RF-Based Cardiac Activity Monitoring

Dataset

Performance

10x improvement
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RF-Based Cardiac Activity Monitoring

« Over-night Performance
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RF-Based Cardiac Activity Monitoring

Conclusion

We develop the first large-scale clinical-level cardiac monitoring system

« High IBIl accuracy: Our system achieves superior accuracy in inter-beat
interval (IBl) measurements, ensuring precise cardiac monitoring.

« Works robustly in daily life: It performs reliably across various real-world
scenarios, including long-term and overnight monitoring.

Ongoing Research for Health Equity

 12-lead ECG reconstruction.
» Disease Monitoring.
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RF-Based Self-supervised Learning

Self-supervised learning leverages unlabeled data to predict parts of the input, generating
representations that can be fine-tuned for downstream tasks like classification, detection, and
segmentation.

Can we design SSL methods for the RF data
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RF-Based Self-supervised Learning
+ Why SSL

______________________________________________________________

Challenges

+ Recognition

\/‘2 Gesture

Easy to collect data

5 z ~+ non-intuitive

i % | .+ hard to annotate
— : — — \ﬁ) ramien | MUCh sparse

| Horizontal AcA-ToF  Vertical AoA-ToF | E = E E E

: N || :
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|
|
|
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|

Signal Representation Feature Extraction

- Two devices (WiFi and Radar)
- Three tasks (gesture, pose and silhouette)



RF-Based Self-supervised Learning

» Contrastive Learning

Different signal representations as data
augmentation

» Masked Autoencoder

Eliminating the need for complex data
augmentations

» RF-aware Augmentation

Approach leveraging RF characteristics

AoA-ToF

DFS

Horizontal AoA-ToF Vertical AoA-ToF

-+

Horizontal AoA-ToF Vertical AoA-ToF

Signal Representation
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Self-supervised Contrastive Learning

RF-URL (MobiCom’ 22)
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First work to do SSL for RF sensing tasks

Song et al. RF-URL In MobiCom 2022



Self-supervised Contrastive Learning

Contrastive learning

Maximize agreement

Zi ~ 2 . o
: )A ) 0 Contrastive learning aims to group
7 9% similar samples (positive) closer
h; <— Representation — h; and diverse samples (negative) far

from each other.

oo

o

How to create positive samples for RF signals?

(Chen et al. 2020)

Song et al. RF-URL In MobiCom 2022



RF-Based Self-supervised Learning

Data augmentations

Image augmentations:

» Crop and resize Augmentations for natural
» Color distort images may not suitable for
» (Gaussian noise RF signals

» Cutout

> .

RF Signal representations:

> Doppler Frequency Shift (DFS) _ |

> Angle of Arrival (AoA) Different representations
> Time of Flight (ToF) should gontams the

» Channel state information (CSI) semantics

> .

Song et al. RF-URL In MobiCom 2022
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RF-Based Self-supervised Learning

Multi-branch backbone network for different
signal representations

M Od el d es i g n : __ _Signal Representation _| Backbone & Translator 1
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1. Backbone Encoder i —— JLEC)
|
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3
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2. Translator | e— Lo
A mediator to transform the different RF )
signals into a unified latent space | N

Song et al. RF-URL In MobiCom 2022



RF-Based Self-supervised Learning

Model design
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Predictor Loss & InfoNCE Loss

edictor Loss & InfoNCE Lo
|
3. Predictor | z;:
: Branch 1 > -
A small shared-weight neural network h | HH_I -
with stop gradient (sg) interacted with : Predicwor £ B | | 5|
different branches | - B &.lB'l.
P o =" s
£y = =L S D(h(e).sulho) = Dlosolet) hleb )= | Sepemd ], 1S
2(n —1) ~ -~ % ~4-- ?D -
~o i ! Zzl g
4. InfoNCE |\\‘~\\ CEA 5 : ‘5_
. . o T E 2 B
Preserve the shared information among | Predictr Z G : =
different representations of the same : I ! PR
_ Branch N+ — » ) - 4-- -
signal o | z' |
Li(, 7 ,) = —log exp(s (2, 24.41) /t) !________i|

exp (s(z}, z1l;c+1) /t) + Zj{zl €xp <3 (Zﬁ’ Ziﬂ) /t)

representations from other samples
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RF-Based Self-supervised Learning

Downstream tasks are fine-tuned with pre-
trained models

Model design ~ MemoryBank
| Buffer 1 |
5. Memory bank | |
. _ - Updat .
Stores representations of the training 1| N B R R |
dataset used to negative samples in 1B 1 @ |
InfoNCE {8118 e
1d z |
update rule 2" <~ m-z+ (1 —m)z2° = - |
- g —{-Update A1]2] -] N:
n n ° .

6. Fine-tuning < : o : :

18 [--§ - :

;' % Buffer N :
|
|
|
|
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RF-Based Self-supervised Learning

Representation quality

How effective are pre-trained features?

Gesture recognition Silhouette Segmentation
Model Parameters Random init = RF-URL (Frozen) Model Parameters Random init RF-URL (Frozen)
ResNet-17 11.18M 46.539 91.514 RFSG-T 0.39M 0.225 0.552
ResNet-35 21.85M 34.971 91.603 RFSG-B 0.76 M 0.239 0.556
ResNet-50 25.55M 28.093 92.407 RFSG-L 2.09M 0.248 0.536
ResNet-101 44.54M 21.617 91.961
ResNet-152 60.19M 22.778 92.095

Pose Estimation

Model Parameters Random init RF-URL (Frozen)

Pre-trained features extracted
meaningful representations for RF

RFP-T 2.66M 198 68 :
RFP-B 3.87M 206 71 SIg nals.
RFP-L 7.09M 200 77

Song et al. RF-URL In MobiCom 2022
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RF-Based Self-supervised Learning

Detal Ied resu Its Pre-training Method Accuracy
Gesture recognition =i =
: Widar3.0[51] 92.9
Model Pre-training 100%labels 50%labels 10%labels 0%labels ResNet-17 86.780
ResNet-35 88.656
= 86.780 82.269 65.699 10.540 ) ResNet-50 89013
ResNet-17 Frozen 91.514 89.549 82.314  10.808 ResNet-101 89.058
Fine-tune 91.201 84.591  63.510 - ResNet-152 o
- 89.013 84815  64.448  11.121 e 91.201 (+4.421
ResNet-50  Frozen 92.407  90.621  83.519  10.630 ResNEtas 99363 - —
Fine-tune 92.631  90.174  71.103 - RF-URL ResNet-50 65631 ( % Fia
- 89.326 84.323 61.411 10.585 (Fine-tune) ResNet-101 93.301 (+4.243
ResNet-152 Frozen 92.095 90.889 84.323 9.558 ResNet-152 94.060 (+4.734
Fine-tune 94.060 91.157 72.086 = ResNet-50 (baseline) 89013
+ RF-URL(frozen) 92.229 (+3.216)
Size 100%  80%  60%  40%  20% 0% + Predictor 92.407 (+0.178)
RF-URL + Fine-tune 92.631 (+0.224)
Frozen 92.407 89.192 82.448 76.061 65.386  28.093 (Details) + 3D CNN 84.323 (-8.308)
Fine-tune  92.631 92586 89.951 84.949 84.055 84.011 s+ ¥ieature inftratislator 96.784 (+12.461)
+ Shuffle BN 97.008 (+0.224)

Song et al. RF-URL In MobiCom 2022



RF-Based Self-supervised Learning

Experimental results

Pose Estimation
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Model Pre-training 100% labels  50% labels  10% labels Pre-training Method Pose Err.(mm)
- 102 304 305 - RF-Pose3D[54] 112.7
RFP-T  Frozen 68 72 104 RFP-T 102
Fine-tune 63 68 103 - RFP-B 114
- 114 288 305 RFP-L 262
RFP-B  Frozen 71 76 111 RFP-T 63 (-39)
Fine-tune 64 70 109 RF-URL RFP-B 64 (-50)
- 262 303 305 (Fine-tune) RFP-L 64 (-198)
RFP-L  Frozen 77 82 119 Baseline: RFP-T(w/o IAM) 97
Fine-tune 64 71 122 + RF-URL(frozen) 79 (-18)
RF-URL + CSA 70 (-9)
Size 100%  80%  60%  40%  20% 0% (Details) + Predictor 68 (-2)
Frozen 68 79 88 101 109 198 + Fine-tune 63 (-5)
Fine-tune 63 67 72 78 83 86 + Shuffle BN 62 (1)

Song et al. RF-URL In MobiCom 2022
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RF-Based Self-supervised Learning

Experimental results

Silhouette Segmentation

Model Pre-training  100% labels  50% labels  10% labels

Pre-training Method IoU
- 0.539 0.539 0.457 ) RF-Pose[52] 0,583
RFSG-T  Frozen 0.552 0.553 0.532
Fine-tune 0.610 0.611 0.581 RFSG-T 0.539
- RFSG-B 0.556
- 0.556 0.550 0.481 RESG-L 0.571
RFSG-B  Frozen 0.557 0.552 0.537
Fine-tune 0.619 0.614 0.586 RFSG-T 0.610 ( )
RF-URL RFSG-B 0.619 ( )
) 0.571 0.591 0.502 (Fine-tune) RFSG-L 0.613 ( )
RFSG-L.  Frozen 0.536 0.529 0.506
Fine-tune 0.613 0.612 0.565 RFSG-B (baseline) 0.556
+ RF-URL(frozen) 0.557 ( )
Size 100%  80% 60% 40% 20% 0% RF-URL + Fine-tune 0.611 ( )
Frozen 0557 0531 0529 0489 0426  0.239 (Details) + Predictor 0.619 ( )
+ Shuffle BN 0.614 (-0.005)

Fine-tune 0.619 0.602 0.585 0.573 0.562 0.556

Song et al. RF-URL In MobiCom 2022
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RF-Based Self-supervised Learning

Conclusion

« A general self-supervised learning framework for RF sensing tasks
- Propose data augmentations for RF signals
- Enhance multiple sensing tasks in an unsupervised manner

« Conducting extensive experiments to demonstrate its effectiveness
- Tested on multiple sensing tasks

Limitations

* The unique characteristics of RF signals are not considered.
* Number of signal representations can be limited

Song et al. RF-URL In MobiCom 2022



D) FEAZL A X { &

University of Science and Technology ofChma

Self-Supervised Learning with MAE

Background

MAE (He et al. 2021)

encoder
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original mask 75% mask 85% mask 95%

Semantic information can be recovered from as few as 5% of the patches.

Can this level of recovery be achieved in the RF domain? Very difficult
Fang et al. PRISM In INFOCOM 2024
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Self-Supervised Learning with MAE

Challenges

RF data is sparse and noisy

u H B ] =4
R A L
_ H N A2 o
Multipath K [
L] «
Ideal Situation 1 Worse Situation 2 Worst Situation 3 Worst Situation 4

Target

Random masking often results in losing the target.

Overfitting noise leads to learning non-informative features.

Fang et al. PRISM In INFOCOM 2024



Self-Supervised Learning with MAE

Solution: Sparsity-aware masking

Notable performance boost
at the same mask ratio

1. Generate dense region proposals.

2. Rank regions by energy and select the top-k.

3. Mask the selected regions.

4. Reconstruct only the missing parts within these regions.
Strategy Mask ratio Silhouette (IoUT) Pose (MPJPE})
FOCUS ~v = 92% 0.7642 73.10
Random v =92% 0.7593 79.11

Fang et al. PRISM In INFOCOM 2024
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ing with MAE

Self-Supervised Learn

Framework

Reconstruction

Reconstruct in
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Encoder-Decoder

FOCUS Masking

Signal Representation
2D DFS

Reconstructed patches

Visible patches

Masked patches

D FOCUS regions

Fang et al. PRISM In INFOCOM 2024
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Self-Supervised Learning with MAE

Implementation
’ 50 consecutive frames

Random stride
sampling
12 random frames
Raw Scale A Scale B

Random stride sampling: to avoid Multi-scale central crop: to amplifies
iInformation leak from consecutive frames the information-dense region

Silhouette Pose
Component
IoUT Improv. MPJPEY  Improv.
Full (ConvX3D-S) 0.7642 - 73.10
- stride sample 0.7597  (-0.0045) 73.58 (+0.48)
- central crop 0.7575  (-0.0022) 76.21 (+2.63)

Fang et al. PRISM In INFOCOM 2024



Self-Supervised Learning with MAE

Performance

Gesture recognition

951 93.75 93.84 5 ﬁ)a
0347 A== § =i
._ -
90.44
90.07
| I, - o e mi A
= A
oot 87.73 -
2}
s
= ’
S 85 1 o
<
/ - A -Scratch
: - @ -Fine-tune
80 { 260
10 20 30 40 %
Epoch

0.77 1
0.76 1
0.75 1
0.74 1
0.73 1
0.72 1

0.71 1

0.7

Silhouette segmentation

0.7624 0.7642
___________ ©
0.7538 =
! 4
0.7441 0.7444
0.‘7,4'1 i DITADE. .. i Nl i S i £
A
0.21?:9 - A -Scratch
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3D pose estimation

| A 13065
‘ - A - Scratch
-@® -Fine-tune
v 107.49
A 102.15
A~ ) 96.89
TT--A
86.67
- 80.20 768
e @-< . 73.10
e
10 20 30 40 50
Epoch

Converges faster & improved performance

Fang et al. PRISM In INFOCOM 2024



Self-Supervised Learning with MAE
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TABLE III
THE RESULTS OF SILHOUETTE SEGMENTATION AND POSE ESTIMATION UNDER RADAR-BASED DATASET
Method Bachone Silhouette Segmentation Pose Estimation Better pe rformance than RF-URL
ToUT w/ Fine-tune Improv. MPJPE+  w/ Fine-tune  Improv.
Supervised RF-Pose2D/3D | 0.7060 - - 110.56 - -
RF-URL [7] | ResNet3D-50 | 0.7278 0.7338 (+0.0060) 90.74 87.54 (-3.20) Much hlgher performance with new
PRISM ResNet3D-50 0.7278 0.7352 (+0.0074) 90.74 88.06 (-2.68) baCkbon e
ConvX3D-S 0.7444 0.7642 (+0.0198) 96.89 73.10 (-23.79)
PRISM ConvX3D-B 0.7485 0.7635 (+0.0150) 98.11 72.67 (-25.44)
ConvX3D-L 0.7473 0.7630 (+0.0157) 99.83 80.51 (-19.32)
TABLE IV Much lower memory consumption & faster
THE RESULTS OF GESTURE RECOGNITION UNDER WIFI-BASED DATASET
TABLE V
Method Backbone Accuracy!  w/ Fine-tune  Improv. THE COMPARISONS OF MEMORY AND SPEED
. EI [11] 80.0
Supervised .
Widar3.0 [8] 92.9 Method Backbone Enc #Para. (M) Memory(G) Speedup
ResNet2D-17 86.78 91.20 (+4.42) RF-URL [7] | ResNet3D-50 429 x 2 75 1x
RF-URL [7] ResNet2D-50 89.01 92.63 (+3.62) ResNet3D-50 429 8 133
ResNet2D-152 89.32 94.06 (+4.74) s 3‘20 = 1'42
ConvX2D-S 90.44 94.03 (+3.59) PRISM A S : A
PRISM ConvX2D-B 88.69 94.72 (+6.03) ConvX3D-B 4.59 29 1.25x
ConvX2D-L 87.59 94.49 (+6.90) ConvX3D-L 8.11 32 1.11x

— fFangetal- PRISMImINFOCOM 2024



Self-Supervised Learning with MAE

Conclusion

* An easy-to-follow approach with a sparsity-aware design.
» Does not rely on signal representations.
* Only considering the sparsity can largely simplify the framework

Fang et al. PRISM In INFOCOM 2024
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Self-Supervised Learning with Group Shuffle

Domain-aware design
Time-Interleaved Analog-to-Digital Converter (TI-ADC)

% g —— Signal . .
£ o /\/ n ADCs can be arranged to achieve a nx sampling rate
< -1+ : : ! T T
g e \ \ A | Channel Swapping Error: the output from multiple
% \ \ /— AD\C 1 Activity . .
= el ———— T = ADC channels is mis-ordered
L ACALALNAA
E \ \ —— ADC 2 Activity
% Inactive - \ \ \—
Py ‘},‘61 Y ors Py o ADC1l, ADC2, ADC3, ADC4, ..., ADC1l, ADC2, ADC3, ADC4
_E \ \ —— ADC 3 Activity
g Inactive \ \ \
e o,;n‘-‘ °~3e py - ADC2, ADC1l, ADC3, ADC4, ..., ADC2, ADC1l, ADC3, ADC4
>, Active - \ \
E \ \ ADC 4 Activity .
& nacave | —— . . randomly shuffling each group
0.00 0.01 0.O2Tirﬁe (S) 0.03 0.04

Song et al. TMM 2024
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Self-Supervised Learning with Group Shuffle
Group Shuffle in Image Patch

Temporal shuffling — FFT — Range bin shuffling _
| _ | | —=) Radar Image Patch Shuffling
Antenna shuffling —» Azimuth|or Elevation shuffling

(W/S, H/S, S?)

1. All Patches follow the
same shuffling

A shuffle |
¢ shuffle 2
* shuffle 3

Singular Values

X, = PXQ
= (PU)Z(Q"V)" o

Range bin '

0 50 100 150
Index

2. shuffling matrix (orthogon

I, I1, (a)
P:[ n]’Q:[ n] X, =PXQ = (PU)E(Q"V)"
ceey Ll R c U Song et al. TMM 2024

b
3. singular é;lues stay unchanged



Self-Supervised Learning with Group Shuffle

Group Shuffle in Raw Signal

antenna  frequency

Raw Signal Shuffle Yo raw signal
ReCs*s”
Rr(m, k) = m(R(m, k)) = [PRQ]m
0 1 0 1 .
Beamforming IT, = [1 O],Hr = [1 0] permutation

2

2
Xw(gj’y) — Z ZRQm,2k€j2m(221";51(1)9)6]'(231;51@7)

m=0 k=0 w/o shuffle w/ shuffle

M K
2 2
. 2m CI)) ( 2m & )
+ Rom+1,2k 16]<2m+1)(2m+1 o) eI\ Zm+1 T :
mEZ:Ok_O m+1,2k+ artifacts
energy re-distribution ( 2m g, 2m ¢T>
2m+1 0 2m + 1
((1)97(1)7')

S (2m+ 1%’ 2m + 1@)
2m

Song et al. TMM 2024
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Self-Supervised Learning with Group Shuffle

Framework No. of Shuffles: A(m,m)?> =m!> A(4,4)® =576
z,/
Queue
— Encoder f, — — l W %
Projector g, 9 Positive pairs Negative pairs
et “ z 5 @&J |
signals 2 & s
2 ,
X IG
Group Shuffle # — ﬁ?ﬁgﬁuﬁl — — —> 1|2 -] Q|-+ [N
k
z!
Projector g, Queue
_ 3D Pose Silhouette Action
Asymmetry augmentation wio Asym. | 128.96 0.709 91.483
w Asym. 121.13 0.727 92.298

Song et al. TMM 2024



Self-Supervised Learning with Group Shuffle

Performance

TABLE 2
Evaluation of different models on 3D pose estimation, silhouette generation, and action recognition under fine-tuning setting, the relative
improvements over supervised training from scratch, and comparison with the SOTA model.

MFBBEZLLAKE

University of Science and Technology of China

Method backbone 3D pose es’.cimation (MPJPE mm) Silhouette. generation (IoU) Action re(?ognition (Acc. %)
Scratch Fine-tune Improve Scratch Fine-tune Improve | Scratch Fine-tune Improve
: RF-Pose [23] - - - 0.697 - - - - -
Supervised
RF-Pose3D [30] | 165.00 - - - - - - - -
TGUL [8] CNX3D-B 134.90 12856  +6.34 0.699 0.698 -0.001 85.211 89.018  +3.807
RF-URL [7] | CNX3D-B 134.90 13391  +0.99 0.699 0.707 +0.008 85.211 88.930  +3.719
CNX3D-S 133.84 123.56  +10.28 0.696 0.724 +0.028 85.938 92.077  +6.139
GSAA CNX3D-B 134.90 121.13 +13.77 0.699 0.727 +0.028 85.211 92.298  +7.087
CNX3D-L 135.64 120.66  +14.98 0.699 0.728 +0.029 85.185  92.380 +7.195
3D pose estimation (MPJPE mm) Silhouette generation (IoU) Action recognition (Acc. %)
p=0.5 0.7 0.9 1.0 p=0.5 0.7 0.9 1.0 p=0.5 0.9 1.0
group shuffle 12497 12423 12446 12517 | 0721 0722 0724 0722 | 90.097 90.911 90.889  90.674
rows or columns 126.04 125.27 126.09 125.65 | 0.719 0.720 0.722 0.723 | 90.449 90471 90.735 90.405
shuffle all 12570 12424 12466 12616 | 0721 0721 0721 0722 | 90537 90.801 89.679  90.889

Song et al. TMM 2024
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Conclusion

» Unique Capabilities: It offers advantages in privacy-preserving sensing, through-
wall detection, and operation in low-light or occluded environments that vision and
audio cannot achieve.

- Current Limitations: /lacks the spatial and contextual richness of vision or the
sequential detail of audio/text, making it less comprehensive as a standalone
modality in general.

- Potential for Growth: Advances in advanced devices and deep learning
approaches could enable RF to bridge its limitations, making it more comparable
to traditional modalities.



Key Takeaways

Pose Estimation
- Irreplaceable in specific scenarios
- A promising area of research
- Publicly available datasets
Fine-grained Vital Signs:
- More fine-grained physiological signals can be sensed.
- Limited existing research
- Self-supervised Learning:
- An important and relatively new topic
- Generalization issue
- Unlabeled data are easy to collect
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